Меню

В широкой части реки скорость течения равна 2 м с в более узкой части скорость

Механизм течения рек

Движение ламинарное и турбулентное

В природе существуют два режима движения жидкости, в том числе и воды: ламинарное и турбулентное. Ламинарное движение — параллельноструйное. При постоянном расходе воды скорости в каждой точке потока не изменяются во времени ни по величине, ни по направлению. В открытых потоках скорость от дна, где она равна нулю, плавно возрастает до наибольшей величины на поверхности. Движение зависит от вязкости жидкости, и сопротивление движению пропорционально скорости в первой степени. Перемешивание в потоке носит характер молекулярной диффузии. Ламинарный режим характерен для подземных потоков, протекающих в мелкозернистых грунтах.

В речных потоках движение турбулентное. Характерной особенностью турбулентного режима является пульсация скорости, т. е. изменение ее во времени в каждой точке по величине и направлению. Эти колебания скорости в каждой точке совершаются около устойчивых средних значений, которыми обычно и оперируют гидрологи. Наибольшие скорости наблюдаются на поверхности потока. В направлении ко дну они уменьшаются относительно медленно и в непосредственной близости от дна имеют еще достаточно большие значения. Таким образом, в речном потоке скорость у дна практически не равна нулю. В теоретических исследованиях турбулентного потока отмечается наличие у дна очень тонкого пограничного слоя, в котором скорость резко уменьшается до нуля.

Турбулентное движение практически не зависит от вязкости жидкости. Сопротивление движению в турбулентных потоках пропорционально квадрату скорости.

Экспериментально установлено, что переход от ламинарного режима к турбулентному и обратно происходит при определенных соотношениях между скоростью vср и глубиной Hср потока. Это соотношение выражается безразмерным числом Рейнольдса

Для открытых каналов критические числа Рейнольдса, при которых меняется режим движения, изменяются примерно в пределах 300-1200. Если принять Re = 360 и коэффициент кинематической вязкости = 0,011, то при глубине 10 см критическая скорость (скорость, при которой ламинарное движение переходит в турбулентное) равна 0,40 см/с; при глубине 100 см она снижается до 0,04 см/с. Малыми значениями критической скорости объясняется турбулентный характер движения воды в речных потоках.

По современным представлениям (А. В. Караушев и др.), внутри турбулентного потока в различных направлениях и с различными относительными скоростями перемещаются элементарные объемы воды (структурные элементы), обладающие различными размерами. Таким образом, наряду с общим движением потока можно заметить движение отдельных масс воды, в течение короткого времени ведущих как бы самостоятельное существование. Этим, очевидно, объясняется появление на поверхности турбулентного потока маленьких воронок — водоворотов, быстро появляющихся и так же быстро исчезающих, как бы растворяющихся в общей массе воды. Этим же объясняется не только пульсация скоростей в потоке, но и пульсации мутности, температуры, концентрации растворенных солей.

Турбулентный характер движения воды в реках обусловливает перемешивание водной массы. Интенсивность перемешивания усиливается с увеличением скорости течения. Явление перемешивания имеет большое гидрологическое значение. Оно способствует выравниванию по живому сечению потока температуры, концентрации взвешенных и растворенных частиц.


Рис. 65. Примеры кривой водной поверхности потока. а — крикая подпора, б — кривая спада (по А. В. Караушеву).

Движение воды в реках

Вода в реках движется под действием силы тяжести F’. Эту силу можно разложить на две составляющие: параллельную дну Fx и нормальную ко дну F’y (см. рис. 68). Сила F’ уравновешивается силой реакции со стороны дна. Сила F’х, зависящая от уклона, вызывает движение воды в потоке. Эта сила, действуя постоянно, должна бы вызвать ускорение движения. Этого не происходит, так как она уравновешивается силой сопротивления, возникающей в потоке в результате внутреннего трения между частицами воды и трения движущейся массы воды о дно и берега. Изменение уклона, шероховатости дна, сужения и расширения русла вызывают изменение соотношения движущей силы и силы сопротивления, что приводит к изменению скоростей течения по длине реки и в живом сечении.

Выделяются следующие виды движения воды в потоках: 1) равномерное, 2) неравномерное, 3) неустановившееся. При равномерном движении скорости течения, живое сечение, расход воды постоянны по длине потока и не меняются во времени. Такого рода движение можно наблюдать в каналах с призматическим сечением.

При неравномерном движении уклон, скорости, живое сечение не изменяются в данном сечении во времени, но изменяются по длине потока. Этот вид движения наблюдается в реках в период межени при устойчивых расходах воды в них, а также в условиях подпора, образованного плотиной.

Неустановившееся движение — это такое, при котором все гидравлические элементы потока (уклоны, скорости, площадь живого сечения) на рассматриваемом участке изменяются и во времени и по длине. Неустановившееся движение характерно для рек во время прохождения паводков и половодий.

При равномерном движении уклон поверхности потока I равен уклону дна i и водная поверхность параллельна выровненной поверхности дна. Неравномерное движение может быть замедленным и ускоренным. При замедляющемся течении вниз по реке кривая свободной водной поверхности принимает форму кривой подпора. Поверхностный уклон становится меньше уклона дна (I i) (рис. 65).


Рис. 68. Схема к выводу уравнения Шези (по А. В. Караушеву).

Скорости течения воды и распределение их по живому сечению

Скорости течения в реках неодинаковы в различных точках потока: они изменяются и по глубине и по ширине живого сечения. На каждой отдельно взятой вертикали наименьшие скорости наблюдаются у дна, что связано с влиянием шероховатости русла. От дна к поверхности нарастание скорости сначала происходит быстро, а затем замедляется, и максимум в открытых потоках достигается у поверхности или на расстоянии 0,2H от поверхности. Кривые изменения скоростей по вертикали называются годографами или эпюрами скоростей (рис. 66). На распределение скоростей по вертикали большое влияние оказывают неровности в рельефе дна, ледяной покров, ветер и водная растительность. При наличии на дне неровностей (возвышения, валуны) скорости в потоке перед препятствием резко уменьшаются ко дну. Уменьшаются скорости в придонном слое при развитии водной растительности, значительно повышающей шероховатость дна русла. Зимой подо льдом, особенно при наличии шуги, под влиянием добавочного трения о шероховатую нижнюю поверхность льда скорости малы. Максимум скорости смещается к середине глубины и иногда расположен ближе ко дну. Ветер, дующий в направлении течения, увеличивает скорость у поверхности. При обратном соотношении направления ветра и течения скорости у поверхности уменьшаются, а положение максимума смещается на большую глубину по сравнению с его положением в безветренную погоду.

По ширине потока скорости как поверхностная, так и средняя на вертикалях меняются довольно плавно, в основном повторяя распределение глубин в живом сечении: у берегов скорость меньше, в центре потока она наибольшая. Линия, соединяющая точки на поверхности реки с наибольшими скоростями, называется стрежнем. Знание положения стрежня имеет большое значение при использовании рек для целей водного транспорта и лесосплава. Наглядное представление о распределении скоростей в живом сечении можно получить построением изотах — линий, соединяющих в живом сечении точки с одинаковыми скоростями (рис. 67). Область максимальных скоростей расположена обычно на некоторой глубине от поверхности. Линия, соединяющая по длине потока точки отдельных живых сечений с наибольшими скоростями, называется динамической осью потока.


Рис. 66. Эпюры скоростей. а — открытое русло, б — перед препятствием, в — ледяной покров, г — скопление шуги.

Средняя скорость на вертикали вычисляется делением площади эпюры скоростей на глубину вертикали или при наличии измеренных скоростей в характерных точках по глубине (VПОВ, V0,2, V0,6, V0,8, VДОН) по одной из эмпирических формул, например

Средняя скорость в живом сечении. Формула Шези

Для вычисления средней скорости потока при отсутствии непосредственных измерений широко применяется формула Шези. Она имеет следующий вид:

Величина коэффициента С не является величиной постоянной. Она зависит от глубины и шероховатости русла. Для определения С существует несколько эмпирических формул. Приведем две из них:

формула Манинга

формула Н. Н. Павловского
где n — коэффициент шероховатости, находится по специальным таблицам М. Ф. Срибного. Переменный показатель в формуле Павловского определяется зависимостью.

Из формулы Шези видно, что скорость потока растет с увеличением гидравлического радиуса или средней глубины. Это происходит потому, что с увеличением глубины ослабевает влияние шероховатости дна на величину скорости в отдельных точках вертикали и тем самым уменьшается площадь на эпюре скоростей, занятая малыми скоростями. Увеличение гидравлического радиуса приводит и к увеличению коэффициента С. Из формулы Шези следует, что скорость потока растет с увеличением уклона, но этот рост при турбулентном движении выражен в меньшей мере, чем при ламинарном.

Скорость течения горных и равнинных рек

Течение равнинных рек значительно более спокойное, чем горных. Водная поверхность равнинных рек сравнительно ровная. Препятствия обтекаются потоком спокойно, кривая подпора, возникающего перед препятствием, плавно сопрягается с водной поверхностью вышерасположенного участка.

Горные реки отличаются крайней неровностью водной поверхности (пенистые гребни, взбросы, провалы). Взбросы возникают перед препятствием (нагромождением валунов на дне русла) или при резком уменьшении уклона дна. Взброс воды в гидравлике носит название гидравлического (водного) прыжка. Его можно рассматривать как одиночную волну, появившуюся на водной поверхности перед препятствием. Скорость распространения одиночной волны на поверхности, как известно, c = , где g — ускорение силы тяжести, H — глубина.

Если средняя скорость течения vср потока оказывается равной скорости распространения волны или превышает ее, то образующаяся у препятствия волна не может распространиться вверх по течению и останавливается вблизи места ее возбуждения. Формируется остановившаяся волна перемещения.

Пусть vср = c. Подставляя в это равенство значение из предыдущей формулы, получим vср = , или

Левая часть этого равенства известна как число Фруда (Fr). Это число позволяет оценить условия существования бурного или спокойного режима течения: при Fr 1 — бурный режим.

Таким образом, между характером течения, глубиной, скоростью, а следовательно, и уклоном существуют следующие соотношения: с увеличением уклона и скорости и уменьшением глубины при данном расходе течение становится более бурным; с уменьшением уклона и скорости и увеличением глубины при данном расходе течение приобретает более спокойный характер.

Горные реки характеризуются, как правило, бурным течением, равнинные реки имеют спокойный режим течения. Бурный режим течения может быть и на порожистых участках равнинных рек. Переход к бурному течению резко усиливает турбулентность потока.

Поперечные циркуляции

Одной из особенностей движения воды в реках является непараллельноструйность течений. Она отчетливо проявляется на закруглениях и наблюдается на прямолинейных участках рек. Наряду с общим параллельным берегам движением потока в целом имеются внутренние течения в потоке, направленные под различными углами к оси движения потока и производящие перемещения водных масс в поперечном к потоку направлении. На это еще в конце прошлого столетия обратил внимание русский исследователь Н. С. Лелявский. Он следующим образом объяснил структуру внутренних течений. На стрежне вследствие больших скоростей на поверхности воды происходит втягивание струй со стороны, в результате в центре потока создается некоторое повышение уровня. Вследствие этого в плоскости, перпендикулярной направлению течения, образуются два циркуляционых течения по замкнутым контурам, расходящиеся у дна (рис. 69 а). В сочетании с поступательным движением эти поперечные циркуляционные течения приобретают форму винтообразных движений. Поверхностное течение, направленное к стрежню, Лелявский назвал сбойным, а донное расходящееся — веерообразным.

На изогнутых участках русла струи воды, встречаясь с вогнутым берегом, отбрасываются от него. Массы воды, переносимые этими отраженными струями, обладающими меньшими скоростями, накладываясь на массы воды, переносимые набегающими на них следующими струями, повышают уровень водной поверхности у вогнутого берега. Вследствие этого возникает перекос водной поверхности, и струи воды, находящиеся у вогнутого берега, опускаются по откосу его и направляются в придонных слоях к противоположному выпуклому берегу. Возникает циркуляционное течение на изогнутых участках рек (рис. 69 б).


Рис. 69. Циркуляционные течения на прямолинейном (а) и на изогнутом (б) участке русла (по Н. С. Лелявскому). 1 — план поверхностных и донных струй, 2 — циркуляционные течения в вертикальной плоскости, 3 — винтообразные течения.

Особенности внутренних течений потока были изучены А. И. Лосиевским в лабораторных условиях. Им была установлена зависимость формы циркуляционных течений от соотношения глубины и ширины потока и выделены четыре типа внутренних течений (рис. 70). Типы I и II представлены двумя симметричными циркуляциями. Для типа I характерно схождение струй у поверхности и расхождение у дна. Этот случай свойствен водотокам с широким и неглубоким руслом, когда влияние берегов на поток незначительно. Во втором случае донные струи направлены от берегов к середине. Этот тип циркуляции характерен для глубоких потоков с большими скоростями. Тип III с односторонней циркуляцией наблюдается в руслах треугольной формы. Тип IV — промежуточный — может возникать при переходе типа I в тип II. В этом случае струи в середине потока могут быть сходящимися или расходящимися, соответственно у берегов — расходящимися или сходящимися. Дальнейшее развитие представления о циркуляционных течениях получили в работах М. А. Великанова, В. М. Маккавеева, А. В. Караушева и др. Теоретические исследования возникновения этих течений излагаются в специальных курсах гидравлики и динамики русловых потоков. Появление поперечных течений на закруглениях русла объясняется развивающейся здесь центробежной силой инерции и связанным с ней поперечным уклоном водной поверхности. Центробежная сила инерции, возникающая на закруглениях, неодинакова на различных глубинах.


Рис. 70. Схема внутренних течений (по А. И. Лосиевскому). 1 — поверхностная струя, 2 — донная струя.

Рис. 71. Схема сложения сил, вызывающих циркуляцию. а — изменение по вертикали центробежной силы P1, б — избыточное давление, в — результирующая эпюра действующих на вертикали сил центробежной и избыточного давления, г — поперечная циркуляция.

В зависимости от направления излучины отклоняющая сила Кориолиса или усиливает, или ослабляет поперечные течения на закруглении. Эта же сила возбуждает поперечные течения на прямолинейных участках.

При низких уровнях на закруглении циркуляционные течения почти не выражены. С повышением уровней, увеличением скорости и центробежной силы циркуляционные течения становятся отчетливыми. Скорость поперечных течений обычно мала — в десятки раз меньше продольной составляющей скорости. Описанный характер циркуляционных течений наблюдается до выхода воды на пойму. С момента выхода воды на пойму в реке создаются как бы два потока — верхний, долинного направления, и нижний, в коренном русле. Взаимодействие этих потоков сложно и еще мало изучено.

В современной литературе по динамике русловых потоков (К. В. Гришанин, 1969 г.) приводится, по-видимому, более строгое объяснение возникновения поперечных циркуляции в речном потоке. Происхождение таких циркуляции связывается с механизмом передачи на элементарные объемы воды в потоке действия кориолисова ускорения посредством градиента давления, обусловленного4 поперечным уклоном (и постоянного на вертикали), и разности касательных напряжений, вызванных на гранях элементарных объемов воды различиями в скоростях потока по вертикали. Аналогичную кориолисову ускорению роль выполняет на повороте русла центростремительное ускорение.

Помимо поперечных циркуляции, в потоке наблюдаются вихревые движения с вертикальной осью вращения (рис. 72).


Рис. 72. Схема вихрей с вертикальными осями (по К. В. Гришанину).

Одни из них подвижны и неустойчивы, другие стационарны и отличаются большими поперечными размерами. Чаще они возникают в местах слияния потоков, за крутыми выступами берегов, при обтекании некоторых подводных препятствий и т. д. Условия формирования стационарных вихрей пока не исследованы. Гришанин высказывает предположение, что образованию устойчивого локализованного вихря способствует значительная глубина потока и существование восходящего течения воды. Эти вихри в потоке, известные под названием водоворотов, напоминают воздушные вихри — смерчи.

Поперечные циркуляции, вихревые движения играют большую роль в транспортировании наносов и формировании речных русел.

Источник

Течение и расход воды в реках

Основы общего землеведения.

Уклон русла. Наиболее характерным признаком всякой реки является то непрерывное движение воды от истока к устью, которое называют течением. Причина течения заключается в наклоне русла, по которому, повинуясь силе тяжести, вода движется с большей или меньшей скоростью. Что же касается скорости, то она находится в прямой зависимости от уклона русла. Уклон же русла определяется отношением разности высот двух пунктов к длине участка, расположенного между этими пунктами. Так, например, если от истока Волги до Калинина 448 км, а разность высот между истоком Волги и Калин и ном равна 74,6 м, то средний уклон Волги на данном участке равен 74,6 м, деленным на 448 км, т. е. 0,00017. Это значит, что на каждый километр длины Волги на данном участке падение — 17 см.

Продольный профиль реки. Отложим по горизонтальной линии последовательно длину различных участков реки, а по вертикальным линиям— высоты этих участков. Соединив концы вертикалей линией, мы получим чертеж продольного профиля реки (рис. 112). Если не обращать особенного внимания на детали, то продольный профиль большинства рек упрощенно можно представить в виде ниспадающей, слегка вогнутой кривой, наклон которой прогрессивно уменьшается от истоков к устью.

Уклон продольного профиля реки для различных участков реки неодинаков. Так, например, для верхнего участка Волги, как мы уже видели, он равен 0,00017, для участка же, расположенного между Горьким и устьем Камы 0,00005, а для участка от Сталинграда до Астрахани — 0,00002.

Примерно то же у Днепра, где в верхнем участке (от Смоленска до Орши) уклон равен 0,00011, а в нижнем участке (от Каховки до Херсона) 0,00001. На участке же, где расположены пороги (от Лоцманской Каменки до Никополя), средний уклон продольного профиля реки 0,00042, т. е. почти в четыре раза больше, чем между Смоленском и Оршей.

Приведенные примеры показывают, что продольный профиль различных рек далеко не одинаков. Последнее понятно: на продольном профиле реки отражается рельеф, геологическое строение и многие другие, географические особенности местности.

Продольный профиль Енисея

Для примера рассмотрим «ступени» на продольном профиле р. Енисея. Здесь участки крупных уклонов мы видим в районе пересечения Западного Саяна, потом Восточного Саяна и, наконец, у северной оконечности Енисейского кряжа (рис. 112). Ступенчатый характер продольного профиля р. Енисея свидетельствует о том, что поднятия в районах указанных гор произошли (геологически) сравнительно недавно, и река еще не успела выровнять продольную кривую своего русла. То же самое приходится сказать о Буреинских горах, прорезаемых р. Амуром.

До сих пор мы говорили о продольном профиле всей реки. Но при изучении рек иногда бывает необходимо определить уклон реки на данном небольшом участке. Этот уклон определяется непосредственно путем нивелировки.

Поперечный профиль реки. В поперечном профиле реки мы различаем две части: поперечный профиль речной долины и поперечный профиль самой реки. Представление о поперечном профиле долины реки мы уже имеем. Он получается в результате обычной съемки рельефа местности. Для получения же представления о профиле самой реки или, точнее, речного русла необходимо произвести промеры глубин реки.

Промеры производятся или ручным способом или механическим. Для промеров ручным способом применяют наметку или ручной лот. Наметка представляет собой шест из гибкого и прочного дерева (ель, ясень, орешник) круглого сечения диаметром 4—5 см, длиной от 4 до 7 м.

Нижний конец наметки отделывается железом (железо предохраняет от раскалывания и помогает своим весом). Наметка окрашивается в белый цвет и размечается на десятые доли метра. Нулевое деление соответствует нижнему концу наметки. При всей простоте устройства наметка дает точные результаты.

Измерение глубин производится также и ручным лотом. Течением реки лот отклоняется от вертикали на некоторый угол, что и заставляет вносить соответствующую поправку.

Промеры на малых реках обычно производятся с мостиков. На реках, достигающих 200—300 м ширины, при скорости течения не более 1,5 м в сек., промеры можно производить с лодки по тросу, протянутому с одного берега реки на другой. Трос должен быть туго натянут. При ширине реки более 100 м необходимо в середине реки ставить на якоре лодку для поддержания троса.

На реках, ширина которых более 500 ж, линия промера определяется створными знаками, поставленными на обоих берегах, и точки промеров определяются угломерными инструментами с берега. Количество промеров по створу зависит от характера дна. Если рельеф дна меняется быстро, промеров должно быть больше, при однообразии дна — меньше. Понятно, что чем больше промеров, тем точнее получается профиль реки.

Для вычерчивания профиля реки проводится горизонтальная линия, на которой по масштабу откладываются точки промеров. От каждой течки вниз проводится перпендикулярная линия, на которой также по масштабу откладываются полученные от промеров глубины. Соединяя нижние концы вертикалей, мы получаем профиль. Ввиду того что глубина рек по сравнению с шириной очень небольшая, при вычерчивании профиля вертикальный масштаб берут больше горизонтального. Поэтому профиль является искаженным (преувеличенным), но более наглядным.

Имея профиль русла реки, мы можем вычислить площадь живого сечения (или площадь водного сечения) реки ( Fm 2 ), ширину реки (В), длину смоченного периметра реки (Рм), наибольшую глубину ( h max м), среднюю глубину реки ( h cp м) и гидравлический радиус реки.

Живым сечением реки называют поперечное сечение реки, заполненное водой. Профиль русла, полученный в результате промеров, как раз и дает представление о живом сечении реки. Площадь живого сечения реки по большей части вычисляется аналитически (реже определяется по чертежу при помощи планиметра). Для вычисления площади живого сечения ( F м 2 ) берут чертеж поперечного профиля реки, на котором вертикали разбивают площадь живого сечения на ряд трапеций, а береговые участки имеют вид треугольников. Площадь каждой отдельной фигуры определяется по формулам, известным нам из геометрии, а потом берется сумма всех этих площадей.

Ширина реки просто определяется по длине верхней горизонтальной линии, изображающей поверхности реки.

Смоченный периметр — это длина линии дна реки на профиле от одного уреза берега реки до другого. Вычисляется он путем сложения длины всех отрезков линии дна на чертеже живого сечения реки.

Гидравлический радиус — это частное от деления площади живого сечения на длину смоченного периметра ( R = F /Р м).

Средняя глубина — это частное от деления площади живого сечения

реки на ширину реки ( h ср = F / B м).

Для равнинных рек величина гидравлического радиуса обыкновенно очень близка к величине средней глубины ( R ≈ h cp ).

Наибольшая глубина восстанавливается по данным промеров.

Уровень реки. Ширина и глубина реки, площадь живого сечения и другие приводимые нами величины могут оставаться неизменными лишь в том случае, если уровень реки остается неизменным. На самом же деле этого никогда не бывает, потому что уровень реки все время изменяется. Отсюда совершенно ясно, что при изучении реки измерение колебания уровня реки является важнейшей задачей.

Для водомерного поста выбирается соответствующий участок реки с прямолинейным руслом, поперечное сечение которого не осложнено мелями или островами. Наблюдение над колебаниями уровня реки обычно ведется при помощи футштока. Футшток — это шест или рейка, разделенная на метры и сантиметры, установленная у берега. За нуль футштока принимается (по возможности) наиболее низкий горизонт реки в данном месте. Выбранный один раз нуль остается постоянным для всех последующих наблюдений. Нуль футштока связывается постоянным репером .

Наблюдение колебаний уровня обычно производится два раза в день (в 8 и 20 час). На некоторых постах устанавливаются самопишущие лимниграфы, которые дают непрерывную запись в виде кривой.

На основании данных, полученных из наблюдений над футштоком, вычерчивается график колебания уровней за тот или другой период: за сезон, за год, за целый ряд лет.

Читайте также:  Шаманские карты река жизни обзор

Скорость течения рек. Мы уже говорили, что скорость течения реки находится в прямой зависимости от уклона русла. Однако эта зависимость не так уж проста, как она может показаться с первого взгляда.

Всякий, кто хоть немного знаком с рекой, знает, что скорость течения у берегов значительно меньше, нежели на середине. Особенно хорошо это известно лодочникам. Всякий раз, когда лодочнику приходится подниматься по реке вверх, он держится берега; когда же ему необходимо быстро спуститься вниз, он держится середины реки.

Более точные наблюдения, производимые в реках и искусственных потоках (имеющих правильное корытообразное русло), показали, что слой воды, непосредственно примыкающий к руслу, в результате трения о дно и стенки русла движется с наименьшей скоростью. Следующий слой имеет уже большую скорость, потому что он соприкасается не с руслом (которое неподвижно), а с медленно движущимся первым слоем. Третий слой имеет еще большую скорость и т. д. Наконец, самую большую скорость обнаруживают в части потока, далее всего отстоящей от дна и стенок русла. Если взять поперечное сечение потока и соединить места с одинаковой скоростью течения линиями (изотахами), то у нас получится схема, наглядно изображающая расположение слоев различной скорости (рис. 113). Это своеобразное слоистое движение потока, при котором скорость последовательно увеличивается от дна и стенок русла к средней части, называют ламинарным. Типичные особенности ламинарного движения можно коротко характеризовать так:

1) скорость всех частиц потока имеет одно постоянное направление;

2) скорость вблизи стенки (у дна) всегда равна нулю, а с удалением от стенок плавно возрастает к середине потока.

Однако мы должны сказать, что в реках, где форма, направление и характер русла сильно отличаются от правильного корытообразного русла искусственного потока, правильного ламинарного движения почти никогда не наблюдается. Уже при одном только изгибе русла в результате действия центробежных сил вся система слоев резко перемещается в сторону вогнутого берега, что в свою очередь вызывает ряд других

Изотахи

движений. При наличии же выступов на дне и по краям русла возникают вихревые движения, противотечения и прочие, весьма сильные отклонения, еще более усложняющие картину. Особенно сильные изменения в движении воды происходят в мелких местах реки, где течение разбивается на струи, расположенные веерообразно.

Кроме формы и направления русла, большое влияние оказывает увеличение скорости течения. Ламинарное движение даже в искусственных потоках (с правильным руслом) резко изменяется при увеличении скорости течения. В быстро движущихся потоках возникают продольные винтообразные струи, сопровождающиеся мелкими вихревыми движениями и своеобразной пульсацией. Все это в значительной степени усложняет характер движения. Таким образом, в реках вместо ламинарного движения чаще всего наблюдается более сложное движение, называемое турбулентным. (Подробнее на характере турбулентных движений мы остановимся позже при рассмотрении условий формирования русла потока.)

Из всего сказанного ясно, что изучение скорости течения реки является делом сложным. Поэтому вместо теоретических вычислений здесь чаще приходится прибегать к непосредственным измерениям.

Измерение скорости течения. Наиболее простым и самым доступным способом измерения скорости течения является измерение при помощи поплавков. Наблюдая (с часами) время прохождения поплавка мимо двух пунктов, расположенных по течению реки на определенном расстоянии друг против друга, мы всегда можем вычислить искомую скорость. Эту скорость обычно выражают количеством метров в секунду.

Указанный нами способ дает возможность определить скорость только самого верхнего слоя воды. Для определения скорости более глубоких слоев воды употребляют две бутылки (рис. 114). При этом верхняя бутылка дает среднюю скорость между обеими бутылками. Зная среднюю скорость течения воды на поверхности (первый способ), мы легко можем вычислить скорость на искомой глубине. Если V 1 будет скорость на поверхности, V 2 — средняя скорость, а V — искомая скорость, то V 2 =( V 1 + V )/2 , откуда искомая скорость v = 2 v 2 v 1 .

Несравненно более точные результаты получаются при измерении особым прибором, носящим название вертушки. Существует много типов вертушек, но принцип их устройства одинаков и заключается в следующем. Горизонтальная ось с лопастным винтом на конце подвижно укреплена в раме, имеющей на заднем конце рулевое перо (рис. 115). Прибор, опущенный в воду, повинуясь рулю, встает как раз против течения,

Поплавки из бутылок

Упрощённый схематический чертёж вертушки

и лопастной винт начинает вращаться вместе с горизонтальной осью. На оси имеется бесконечный винт, который можно соединить со счетчиком. Глядя на часы, наблюдатель включает счетчик, который начинает отсчитывать количество оборотов. Через определенный промежуток времени счетчик выключается, и наблюдатель по количеству оборотов определяет скорость течения.

Кроме указанных способов, применяют еще измерение особыми батометрами, динамометрами и, наконец, химическими способами, известными нам по изучению скорости течения грунтовых вод. Примером батометра может служить батометр проф. В. Г. Глушкова, представляющий собой резиновый баллон, отверстие которого обращено навстречу течению. Количество воды, которое успевает попасть в баллон за единицу времени, дает возможность определить скорость течения. Динамометры определяют силу давления. Сила давления позволяет вычислить скорость.

Когда требуется получить детальное представление о распределении скоростей в поперечном сечении (живом сечении) реки, поступают следующим образом:

1. Вычерчивается поперечный профиль реки, причем для удобства вертикальный масштаб берется в 10 раз больше горизонтального.

2. Проводятся вертикальные линии по тем пунктам, в которых производились измерения скоростей течения на разных глубинах.

3. На каждой вертикали отмечается соответствующая глубина по масштабу и обозначается соответствующая скорость.

Соединив точки с одинаковыми скоростями, мы получим систему кривых (изотах), дающую наглядное представление о распределении скоростей в данном живом сечении реки.

Средняя скорость. Дли многих гидрологических расчетов необходимо иметь данные о средней скорости течения воды живого сечения реки. Но определение средней скорости воды представляет собой довольно сложную задачу.

Мы уже говорили о том, что движение воды в потоке отличается не только сложностью, но и неравномерностью, во времени (пульсация). Однако, исходя из ряда наблюдений, мы всегда имеем возможность вычислить среднюю скорость течения для любой точки живого сечения реки. Имея же величину средней скорости в точке, мы можем на графике изобразить распределение скоростей по взятой нами вертикали. Для этого глубина каждой точки откладывается по вертикали (сверху вниз), а скорость течения по горизонтали (слева направо). То же проделываем и с другими точками взятой нами вертикали. Соединив концы горизонтальных линий (изображающих скорости), мы получим чертеж, дающий ясное представление о скоростях течений на различных глубинах взятой нами вертикали. Этот чертеж носит название графика скоростей или годографа скоростей.

По данным многочисленных наблюдений выявилось, что для получения полного представления о распределении скоростей течения по вертикали достаточно определить скорости на следующих пяти точках: 1) на поверхности, 2) на 0,2 h , 3) на 0,6 h , 4) на 0,8 h и 5) на дне, считая h — глубиной вертикали от поверхности до дна.

Годограф скоростей дает ясное представление об изменении скоростей от поверхности до дна потока на взятой вертикали. Наименьшая скорость у дна потока обусловлена главным образом трением. Чем больше шероховатость дна, тем резче уменьшаются скорости течений. В зимнее время, когда поверхность реки покрыта льдом, возникает трение еще и о поверхность льда, что также отражается на скорости течения.

Годограф скоростей позволяет нам вычислить среднюю скорость течения реки по данной вертикали.

Средняя скорость течения по вертикали живого сечения потока проще всего определить по формуле:

где ώ — площадь годографа скоростей, а Н — высота этой площади. Иначе говоря, для определения средней скорости течения по вертикали живого сечения потока нужно площадь годографа скоростей разделить на ее высоту.

Площадь годографа скоростей определяется или при помощи планиметра или аналитически (т. е. разбивая на простые фигуры — треугольники и трапеции).

Средняя скорость потока определяется различными способами. Наиболее простым способом является умножение максимальной скорости ( V max ) на коэффициент шероховатости (п). Коэффициент шероховатости для горных рек приблизительно можно считать 0,55, для рек с руслом, выстланным гравием, 0,65, для рек с неровным песчаным или глинистым ложем 0,85.

Для точного определения средней скорости течения живого сечения потока пользуются различными форхмулами. Наиболее употребительной является формула Шези.

где v — средняя скорость живого сечения потока, R — гидравлический радиус, J — поверхностный уклон потока и С — коэффициент скорости. Но здесь значительные трудности представляет определение коэффициента скорости.

Коэффициент скорости определяется по различным эмпирическим формулам (т. е. полученным на основе изучения и анализа большого количества наблюдений). Наиболее простой является формула:

где п — коэффициент шероховатости, a R — уже знакомый нам гидравлический радиус.

Расход. Количество воды в м, протекающее через данное живое сечение реки в секунду, называют расходом реки (для данного пункта). Теоретически расход (а) вычислить просто: он равен площади живого сечения реки ( F ), умноженной на среднюю скорость течения ( v ) , т. е а = Fv . Так, например, если площадь живого сечения реки равна 150 м 2 , а скорость 3 м/сек, то расход будет равен 450 м 3 в секунду. При вычислении расхода за единицу количества воды берется кубический метр, а за единицу времени — секунда.

Мы уже говорили о том, что теоретически расход реки для того или другого пункта вычислить нетрудно. Выполнить же эту задачу практически дело значительно более сложное. Остановимся на простейших теоретических и практических способах, чаще всего применяемых при изучении рек.

Существует много различных способов определения расхода воды в реках. Но все их можно разбить на четыре группы: объемный способ, способ смешения, гидравлический и гидрометрический.

Объемный способ с успехом применяется для определения расхода самых небольших речек (ключей и ручьев) с расходом от 5 до 10 л (0,005— 0,01 м 3 ) в секунду. Суть его заключается в том, что ручей запруживается и вода спускается по желобу. Под желоб ставится ведро или бак (в зависимости от величины ручья). Объем сосуда должен быть точно измерен. Время наполнения сосуда измеряется в секундах. Частное от деления объема сосуда (в метрах) на время наполнения сосуда (в секундах) как. раз и дает искомую величину. Объемный способ дает наиболее точные результаты.

Способ смешения основан на том, что в определенном пункте реки впускается в поток раствор какой-либо соли или краски. Определяя содержание соли или краски в другом, ниже расположенном, пункте потока, вычисляют расход воды (простейшая формула

где q — расход соляного раствора, к1—концентрация раствора соли при выпуске, к2 — концентрация раствора соли в нижележащем пункте). Этот способ является одним из наилучших для бурных горных рек.

Гидравлический способ основан на применении различного рода гидравлических формул при протекании воды как через естественные русла, так и искусственные водосливы.

Приведем простейший пример способа водослива. Строится запруда, верх которой имеет тонкую стенку (из дерева, бетона). В стенке прорезан водослив в виде прямоугольника, с точно определенными размерами .основания. Вода переливает через водослив, и расход вычисляется по формуле

— коэффициент водослива, b — ширина порога водослива, H —напор над ребром водослива, g —ускорение силы тяжести), При помощи водослива можно с большой точностью измерять расходы от 0,0005 до 10 м 3 /сек. Особенно широко он применяется в гидравлических лабораториях.

Гидрометрический способ основан на измерении площади живого сечения и скорости течения. Он является наиболее распространенным. Вычисление ведется по формуле, о чем мы уже говорили.

Сток. Количество воды, протекающее через данное живое сечение реки в секунду, мы называем расходом. Количество же воды, протекающее через данное живое сечение реки на протяжении более долгого периода, называют стоком. Величина стока может быть исчислена за сутки, за месяц, за сезон, за год и даже за ряд лет. Чаще всего сток исчисляется за сезоны, потому что сезонные изменения для большинства рек особенно сильны и характерны. Большое значение в географии имеют величины годовых стоков и в особенности величина среднего годового стока (сток, вычисленный из многолетних данных). Средний годовой сток дает возможность вычислять средний расход реки. Если расход выражается в кубических метрах в секунду, то годовой сток (во избежание очень крупных чисел) выражается в кубических километрах.

Имея сведения о расходе, мы можем получить данные и о стоке за тот или другой период времени (путем умножения величины расхода на количество секунд взятого периода времени). Величину стока в данном случае выражается объемно. Сток крупных рек выражается обыкновенно в кубических километрах.

Так, например, средний годовой сток Волги 270 км 3 , Днепра 52 км 3 , Оби 400 км 3 , Енисея 548 км 3 , Амазонки 3787 км, 3 и т. д.

При характеристике рек очень важное значение имеет отношение величины стока к количеству осадков, выпадающих на площади бассейна взятой нами реки. Количество осадков, как мы знаем, выражается толщиной слоя воды в миллиметрах. Следовательно, для сравнения величины стока с величиной осадков необходимо величину стока выразить также толщиной слоя воды в миллиметрах. Для этого величину стока за данный период, выраженную в объемных мерах, распределяют равномерным слоем по всей площади бассейна реки, лежащей выше пункта наблюдения. Эта величина, называемая высотой стока (А), вычисляется по формуле:

А — это высота стока, выраженная в миллиметрах, Q — расход, Т — период времени, 10 3 служит переводом метров в миллиметры и 10 6 для перевода квадратных километров в квадратные метры.

Отношение количества стока к количеству выпавших осадков называют коэффициентом стока. Если коэффициент стока обозначить буквой а, а количество осадков, выраженное в миллиметрах,— h , то

Коэффициент стока, как и всякое отношение,— величина отвлеченная. Ее можно выразить в процентах. Так, например, для р. Невы А=374 мм, h = 532 мм; следовательно, а = 0,7, или 70%. В данном случае коэффициент стока р. Невы позволяет нам сказать, что из всего количества осадков, выпадающих в бассейне р. Невы, 70% стекает в море, а 30% испаряется. Совершенно иную картину мы наблюдаем на р. Ниле. Здесь А=35 мм, h =826 мм; следовательно а=4%. Значит, 96% всех осадков бассейна Нила испаряется и только 4% доходит до моря. Уже из приведенных Примеров видно, какое огромное значение коэффициент стока имеет для географов.

Приведем в качестве примера среднее значение осадков и стока для некоторых рек Европейской части СССР.

В приведенных нами примерах количество осадков, величины стоков, а, следовательно, и коэффициенты стоков исчислены как средние годовые на основании многолетних данных. Само собой разумеется, что коэффициенты стоков могут быть выведены на любой период времени: сутки, месяц, время года и т. д.

В некоторых случаях сток выражается количеством литров в секунду на 1 км 2 площади бассейна. Эта величина стока носит название модуля стока.

Величину среднего многолетнего стока при помощи изолиний можно положить на карту. На такой карте сток выражен модулями стока. Она дает представление о том, что средний годовой сток на равнинных частях территории нашего Союза имеет зональный характер, причем величина стока уменьшается к северу. По такой карте можно видеть, какое огромное значение для стока имеет рельеф.

Питание рек. Различают три основных вида питания рек: питание поверхностными водами, питание подземными водами и смешанное питание.

Питание поверхностными водами можно подразделить на дождевое, снеговое и ледниковое. Дождевое питание свойственно рекам тропических областей, большинству муссонных областей, а также многим районам Западной Европы, отличающимся мягким климатом. Снеговое питание характерно для стран, где в течение холодного периода накапливается много снега. Сюда относится большая часть рек территории СССР. В весеннее время для них характерны мощные паводки. Особо необходимо выделить снега высоких горных стран, которые наибольшее количество воды дают в конце весны и в летнее время. Это питание, носящее название горноснегового, близко к ледниковому питанию. Ледники, как и горные снега, дают воду главным образом в летнее время.

Питание подземными водами осуществляется двумя путями. Первый путь — это питание рек более глубокими водоносными слоями, выходящими (или, как говорят, выклинивающимися) в русло реки. Это достаточно устойчивое питание для всех времен года. Второй путь — питание грунтовыми водами аллювиальных толщ, непосредственно связанных с рекой. В периоды высокого стояния воды аллювий насыщается водой, а после спада вод медленно возвращает реке свои запасы. Это питание менее устойчиво.

Реки, получающие свое питание от одних поверхностных или одних подземных вод, встречаются редко. Значительно чаще встречаются реки со смешанным питанием. В одни периоды года (весна, лето, начало осени) для них преобладающее значение имеют поверхностные воды, в другие периоды (зимой или в периоды засухи) грунтовое питание становится единственным.

Можно упомянуть еще о реках, питающихся конденсационными водами, которые могут быть и поверхностными и подземными. Подобные реки чаще встречаются в горных районах, где скопления глыб и камней на вершинах и склонах конденсируют влагу в заметных количествах. Эти воды могут влиять на увеличение стока.

Условия питания рек в различные времена года. В зимнее время боль шая часть наших рек питается исключительно грунтовыми водами. Это питание довольно равномерно, поэтому зимний сток для большинства наших рек можно характеризовать как наиболее равномерный, очень слабо убывающий от начала зимы к весне.

Весной характер стока и вообще весь режим рек резко изменяется. Накопившиеся за зиму осадки в виде снега быстро стаивают, и талые воды в огромном количестве сливаются в реки. В результате получается весеннее половодье, которое в зависимости от географических условий бассейна реки длится более или менее продолжительное время. О характере весенних половодий мы будем говорить несколько позже. В данном же случае отметим лишь один факт: весной к грунтовому питанию прибавляется огромное количество весенних талых снеговых вод, что увеличивает сток во много раз. Так, например, для Камы средний расход в весеннее время превышает зимний расход в 12 и даже в 15 раз, для Оки в 15—20 раз; расход Днепра у Днепропетровска в весеннее время в некоторые годы превышает зимний расход в 50 раз, у мелких рек разница еще значительнее.

В летнее время питание рек (в наших широтах) осуществляется, с одной стороны, грунтовыми водами, с другой — непосредственным стоком дождевых вод. Согласно наблюдениям акад. Оппокова в бассейне верхнего Днепра этот непосредственный сток дождевых вод в течение летних месяцев достигает 10%. В горных районах, где условия стока более благоприятны, этот процент значительно увеличивается. Но особенно большой величины он достигает в тех районах, которые отличаются широким распространением вечной мерзлоты. Здесь после каждого дождя уровень рек быстро повышается.

В осеннее время по мере понижения температур испарение и транспирация постепенно уменьшаются, и поверхностный сток (сток дождевых вод) увеличивается. В результате осенью сток, вообще говоря, увеличивается вплоть до того момента, когда жидкие атмосферные осадки (дожди) сменяются твердыми (снегом). Таким образом, осенью, как и

Колебания уровня р. Волги у г. Куйбышева

мы имеем грунтовое плюс дождевое питание, причем дождевое постепенно уменьшается и к началу зимы прекращается вовсе.

Таков ход питания обычных рек в наших широтах. В высокогорных странах летом прибавляются еще талые воды горных снегов и ледников.

В пустынных и сухостепных областях талые воды горных снегов и льдов играют доминирующую роль (Аму-Дарья, Сыр-Дарья и др.).

Колебание уровней вод в реках. Мы только что говорили об условиях питания рек в различные времена года и в связи с этим отмечали, как изменяется сток в различное время года. Наиболее наглядно эти изменения показывает кривая колебания уровней воды в реках. Вот перед нами три графика. Первый график дает представление о колебании уровня рек лесной зоны Европейской части СССР (рис. 116). На первом графике (р. Волги) характерен

График колебаний р. Яны у г. Верхоянска

быстрый и высокий подъем с продолжительностью около 1 /2 месяца.

Теперь обратите внимание на второй график (рис. 117), характерный для рек таежной зоны Восточной Сибири. Здесь резкий подъем весной и ряд подъемов летом в связи с дождями и наличием вечной мерзлоты, увеличивающей быстроту стока. Наличие той же мерзлоты, снижающей зимнее грунтовое питание, приводит к особенно низкому уровню воды в зимний период.

На третьем графике (рис. 118) кривая колебаний уровня рек таежной зоны Дальнего Востока. Здесь в связи с мерзлотой тот же очень низкий уровень в холодный период и непрерывные резкие колебания уровня в теплые периоды. Они обусловливаются весной ив начале лета таянием снегов, а позже дождями. Наличие гор и вечной мерзлоты ускоряет сток, что особенно резко сказывается на колебании уровня.

Кривые колебания уровня р. Амура за 1939 год

График колебания уровней р. Камы.

Характер колебания уровней одной и той же реки в различные годы неодинаков. Вот перед нами график колебания уровней р. Камы для различных лет (рис. 119). Как видите, река в различные годы имеет весьма различный характер колебаний. Правда, здесь выбраны годы наиболее резких отклонений от нормы. Но вот перед нами второй график колебаний уровней р. Волги (рис. 116). Здесь все колебания однотипные, но размах колебаний и продолжительность разлива весьма различны.

В заключение необходимо сказать, что изучение колебания уровней рек, помимо научного значения, имеет также огромное практическое значение. Снесенные мосты, разрушенные плотины и прибрежные сооружения, затопленные, а иногда совершенно разрушенные и смытые селения уже давно заставили человека внимательно отнестись к этим явлениям и заняться их изучением. Немудрено, что наблюдения за колебаниями уровней рек ведутся с глубокой древности (Египет, Месопотамия, Индия, Китай и т. д.). Речное судоходство, строительство дорог, и в особенности железных дорог, потребовало более точных наблюдений.

Наблюдение над колебаниями уровней рек у нас в России началось, по-видимому, очень давно. В летописях, начиная с XV в., мы встречаем нередко указания на высоту разливов р. Москвы и Оки. Наблюдения над колебаниями уровня Москвы-реки производились уже ежедневно. С начала XIX в. ежедневные наблюдения проводились уже на всех крупных пристанях всех судоходных рек. Из года в год количество гидрометрических станций непрерывно возрастало. В дореволюционное время у нас в России существовало более тысячи водомерных постов. Но особенного развития эти станции достигли в советское время, что легко видеть из приведенной таблицы.

Весеннее половодье. В период весеннего таяния снегов уровень воды в реках резко повышается, и вода, переполняя обычно русло, выходит из берегов и нередко заливает пойму. Это явление, характерное для большинства наших рек, носит название весеннего половодья.

Время наступления половодья зависит от климатических условий местности, а продолжительность периода половодья, кроме того, от размеров бассейна, отдельные части которого могут находиться при различных климатических условиях. Так, например, для р. Днепра (по наблюдениям у г. Киева) продолжительность половодья от 2,5 до 3 месяцев, тогда как для притоков Днепра — Сулы и Псёла — продолжительность половодья всего около 1,5—2 месяцев.

Высота весеннего половодья зависит от многих причин, но главнейшими из них являются: 1) количество снега в бассейне реки к началу таяния и 2) интенсивность весеннего таяния.

Некоторое значение имеет также степень насыщенности водой почвы в бассейне реки, мерзлота или талость почв, весенние осадки и др.

Для большинства крупных рек Европейской части СССР характерен весенний подъем воды до 4 м. Однако в различные годы высота весеннего половодья подвержена очень сильным колебаниям. Так, например, для Волги у г. Горького подъемы воды доходят до 10—12 м, у г. Ульяновска до 14 м; для р. Днепра за 86 лет наблюдений (с 1845 по 1931 г.) от 2,1 м до 6—7 и даже 8,53 м (1931 г.).

Читайте также:  Реки западного района москвы

Наиболее высокие подъемы воды приводят к наводнениям, которые причиняют большой ущерб населению. Примером может служить наводнение в Москве 1908 г., когда значительная часть города и полотно Московско-Курской железной дороги на десятки километров оказались под водой. Очень сильное наводнение испытал ряд волжских городов (Рыбинск, Ярославль, Астрахань и др.) в результате необычайно высокого подъема воды р. Волги весной 1926 г.

На больших сибирских реках в связи с заторами подъем воды доходит до 15—20 и более метров. Так, на р. Енисее до 16 м, а на р. Лене (у Булуна) до 24 м.

Паводки. Помимо периодически повторяющихся весенних половодий, наблюдаются еще внезапные подъемы воды, вызванные или выпадением сильных дождей, или какими-либо иными причинами. Эти внезапные подъемы воды в реках в отличие от периодически повторяющихся весенних половодий называют паводками. Паводки в отличие от половодий могут иметь место в любое время года. В условиях равнинных областей, где уклон рек очень невелик, эти паводки могут вызвать резкие повышения 1 уровней главным образом в небольших реках. В горных условиях паводки проявляются и на более крупных реках. Особенно сильные паводки наблюдаются у нас на Дальнем Востоке, где, помимо горных условий, мы имеем внезапные продолжительные ливни, дающие за один-два дня более 100 мм осадков. Здесь летние паводки нередко принимают характер сильных, иногда губительных наводнений.

Известно, что на высоту половодий и характер стока вообще огромное влияние оказывают леса. Они прежде всего обеспечивают медленное таяние снега, что удлиняет продолжительность половодья и снижает высоту паводка. Кроме того, лесная подстилка (опавшая листва, хвоя, мхи и т. д.) сохраняет влагу от испарения. В результате коэффициент поверхностного стока в лесу в три-четыре раза меньше чем на пашне. Отсюда и высота паводка уменьшается до 50%.

В целях уменьшения разливов и вообще регулирования стока у нас в СССР правительством обращено особое внимание на сохранение лесов в районах питания рек. Постановлением (от 2/ VII 1936 г.) предусмотрено сохранение лесов по обоим берегам рек. При этом в верхних течениях рек должны сохраняться полосы леса в 25 км ширины, а в нижнем течения 6 км .

Возможности дальнейшей борьбы с разливами и развитие мероприятий по регулированию поверхностного стока в нашей стране, можно сказать, неограниченны. Создание лесных полезащитных полос и водохранилищ регулирует сток на огромных пространствах. Создание огромной сети каналов и колоссальных водохранилищ еще в большей степени подчиняет сток воле и наибольшей выгоде человека социалистического общества.

Межень. В период, когда река живет почти исключительно за счет питания грунтовыми водами при отсутствии питания дождевыми водами, уровень реки является наиболее низким. Этот период наиболее низкого стояния уровня вод в реке носит название межени. Началом межени считают конец спада весеннего половодья, а концом межени — начало осеннего подъема уровня. Значит, межень или меженный период для большинства наших рек соответствует летнему периоду.

Замерзание рек. Реки холодных и умеренных стран в холодный период года покрываются льдом. Замерзание рек начинается обыкновенно у берегов, где наиболее слабое течение. В дальнейшем на поверхности воды появляются кристаллики и ледяные иглы, которые, собираясь в большом количестве, образуют так называемое «сало». По мере дальнейшего охлаждения воды в реке появляются льдины, количество которых постепенно увеличивается. Иногда сплошной осенний ледоход продолжается несколько дней, а при тихой морозной погоде река «встает» довольно быстро, особенно на поворотах, где накапливается большое количество льдин. После того как река покрылась льдом, она переходит на питание грунтовыми водами, причем уровень воды нередко понижается, а лед на реке прогибается.

Лед путем нарастания снизу, постепенно утолщается. Толщина ледяного покрова в зависимости от условий климата может быть очень различна: от нескольких сантиметров до 0,5— 1 м, а в некоторых случаях (в Сибири) до 1,5—2 м. От таяния и замерзания выпавшего снега лед может утолщаться и сверху.

Выходы большого количества источников, приносящих более теплую воду, в некоторых случаях приводят к образованию «полыньи», т. е. незамерзающего участка.

Процесс замерзания реки начинается охлаждением верхнего слоя воды и образованием тонких пленок льда„ известных под названием сала. В результате турбулентного характера течения происходит перемешивание воды, что приводит к охлаждению всей массы воды. При этом температура воды может быть несколько ниже 0° (на р. Неве до — 0°,04, на р. Енисее —0°,1): Переохлажденная вода создает благоприятные условия для образования кристалликов льда, в результате чего возникает так называемый глубинный лед. Глубинный лед, образовавшийся на дне, называется донным льдом. Глубинный лед, находящийся во взвешенном состоянии, называют шугой. Шуга может находиться во взвешенном состоянии, а также всплывать на поверхность.

Донный лед, постепенно нарастая, отрывается от дна и в силу своей меньшей плотности всплывает на поверхность. При этом донный лед, отрываясь от дна, захватывает с собой и часть грунта (песок, гальку и даже камни). Донный лед, всплывший на поверхность, также называют шугой.

Скрытая теплота ледообразования быстро расходуется, и вода реки все время, вплоть до образования ледяного покрова, остается переохлажденной. Но как только возникает ледяной покров, потеря тепла в воздух в значительной степени прекращается и вода больше уже не переохлаждается. Понятно, что и образование кристалликов льда (а следовательно, и глубинного льда) прекращается.

При значительной скорости течения образование ледяного покрова сильно замедляется, что в свою очередь приводит к образованию глубинного льда в огромных количествах. В качестве примера можно указать на р. Ангару. Здесь шуга. и. донный лед, забивая русло, образуют зажоры. Закупорка русла приводит к высокому подъему уровня воды. После образования ледяного покрова процесс образования глубинного льда резко сокращается, и уровень реки быстро понижается.

Образование ледяного покрова начинается с берегов. Здесь при меньшей скорости течения скорее образуется лед (забереги). Но этот лед нередко увлекается течением и вместе с массой шуги обусловливает так называемый осенний ледоход. Осенний ледоход иногда сопровождается заторами, т. е. образованием ледяных плотин. Заторы (как и зажоры) могут вызывать значительные подъемы воды. Заторы возникают обыкновенно в суженных участках реки, на крутых поворотах, на перекатах, а также у искусственных сооружений.

На больших реках, текущих на север (Обь, Енисей, Лена), низовья рек замерзают раньше, что способствует образованию особенно мощных заторов. Поднимающийся при этом уровень вод в некоторых случаях может создать условия для возникновения обратных течений в нижних участках притоков.

С момента образования ледяного покрова река вступает в период ледостава. С этого момента лед медленно нарастает снизу. На толщину ледяного покрова, помимо температур, большое влияние оказывает снеговой покров, предохраняющий поверхность реки от охлаждения. В среднем толщина льда на территории СССР достигает:

Полыньи. Нередки случаи, когда некоторые участки реки зимой не замерзают. Эти участки называют полыньями. Причины их образования различны. Чаще всего они наблюдаются на участках быстрого течения, на месте выхода большого количества источников, на месте спуска фабричных вод и др. В некоторых случаях подобные участки наблюдаются также при выходе реки из глубокого озера. Так, например, р. Ангара при выходе из оз. Байкал километров на 15, а в некоторые годы даже на 30, не замерзает вовсе (Ангара «подсасывает» более теплую воду Байкала, которая нескоро потом охлаждается до точки замерзания).

Вскрытие рек. Под влиянием весенних солнечных лучей снег на льду начинает таять, в результате чего на поверхности льда образуются линзообразные скопления воды. Потоки воды, стекающие с берегов, усиливают таяние льда особенно у берегов, что приводит к образованию закраин.

Обычно перед началом вскрытия наблюдается подвижка льда. При этом лед то начинает двигаться, то останавливается. Момент подвижек является наиболее опасным для сооружений (плотин, дамб, мостовых устоев). Поэтому около сооружений лед заблаговременно обкалывается. Начинающийся подъем вод взламывает льды, что в конечном итоге приводит к ледоходу.

Весенний ледоход обыкновенно бывает много сильнее осеннего, что обусловливается значительно большим количеством воды и льда. Ледяные заторы весной также больше осенних. Особенно больших размеров они достигают на северных реках, где вскрытие рек начинается сверху. Приносимые рекой льды задерживаются на ниже расположенных участках, где лед еще крепок. В результате образуются мощные ледяные плотины, которые за 2—3 часа поднимают уровень воды на несколько метров. Последующий прорыв плотины вызывает очень сильные разрушения. Приведем пример. Река Обь вскрывается у Барнаула в конце апреля, а у Салехарда в начале июня. Толщина льда у Барнаула около 70 см, а в низовьях Оби около 150 см. Поэтому явление заторов здесь совершенно обычно. При образовании заторов (или, как здесь называют, «зажоров») уровень вод за 1 час поднимается на 4—5 м и так же быстро понижается после прорыва ледяных плотин. Грандиозные потоки воды и льда могут уничтожать леса на больших площадях, разрушать берега, прокладывать новые русла. Заторы могут легко разрушать даже самые крепкие сооружения. Поэтому при планировании сооружений необходимо учитывать места сооружений, тем более, что заторы обычно бывают на одних и тех же участках. Для защиты сооружений или зимних стоянок речного флота лед на данных участках обычно взрывается.

Подъем воды при заторах на Оби достигает 8—10 м, а в низовьях р. Лены (у г. Булуна) — 20—24 м.

Гидрологический год. Сток и другие характерные черты жизни рек, как мы уже видели, в различные времена года различны. Однако времена года в жизни реки не совпадают с обычными календарными временами года. Так, например, зимний сезон для реки начинается с того момента, когда дождевое питание прекращается и река переходит к зимнему грунтовому питанию. В пределах территории СССР этот момент в северных районах наступает в октябре, а в южных в декабре. Таким образом, одного точно установленного момента, подходящего для всех рек СССР, не существует. То же самое нужно сказать и относительно других сезонов. Само собой разумеется, что начало года в жизни реки, или, как говорят,, начало гидрологического года не может совпадать с началом календарного года (1 января). Началом гидрологического года считают момент перехода реки к исключительно грунтовому питанию. Для различных мест территории даже одного нашего государства начало гидрологического года не может быть одно и то же. Для большинства рек СССР начало гидрологического года приходится на период от 15/ XI до 15/Х II .

Климатическая классификация рек. Уже из того, что было сказано о режиме рек в различные времена года, ясно, что климат оказывает огромное влияние на реки. Достаточно, например, сравнить реки Восточной Европы с реками Западной и Южной Европы, чтобы заметить разницу. Наши реки замерзают на зиму, вскрываются весной и дают исключительно высокий подъем воды в период весеннего половодья. Реки Западной Европы очень редко замерзают и почти не дают весенних разливов. Что же касается рек Южной Европы, то они вовсе не замерзают, и самый высокий уровень вод имеют в зимнее время. Еще более резкую разницу мы находим между реками других стран, лежащих в других климатических областях. Достаточно вспомнить реки муссонных областей Азии, реки северной, центральной и южной Африки, реки Южной Америки, Австралии и т. д. Все это вместе взятое дало основание нашему климатологу Воейкову классифицировать реки в зависимости от тех климатических условий, в которых они находятся. Согласно этой классификации (несколько измененной позже) все реки Земли делятся на три типа: 1) реки, питающиеся почти исключительно талыми водами снегов и льдов, 2) реки, питающиеся только дождевыми водами, и 3) реки, получающие воду обоими способами, указанными выше.

К рекам первого типа относятся:

а) реки пустынь, окаймленных высокими горами со снежными вершинами. Примерами могут служить: Сыр-Дарья, Аму-Дарья, Тарим и др.;

б) реки полярных областей (северной Сибири и Северной Америки), находящихся главным образом на островах.

К рекам второго типа относятся:

а) реки Западной Европы с более или менее равномерным дождевым питанием: Сена, Майн, Мозель и др.;

б) реки средиземноморских стран с зимним разливом: реки Италии, Испании и др.;

в) реки тропических стран и муссонных областей с летними разливами: Ганг, Инд, Нил, Конго и др.

К рекам третьего типа, питающимся как талой, так и дождевой водой, относятся:

а) реки Восточно-Европейской, или Русской, равнины, Западной Сибири, Северной Америки и другие с весенним разливом;

б) реки, получающие питание с высоких гор, с весенним и летним разливом.

Существуют и другие более новые классификации. Среди них следует отметить классификацию М. И. Львовича, который взял в основу ту же классификацию Воейкова, но в целях уточнения принял во внимание не только качественные, но и количественные показатели источников питания рек и сезонное распределение стока. Так, например, он берет величину годового стока и определяет, какой процент стока обусловливается тем или другим источником питания. Если величина стока какого-либо источника более 80%, то этому источнику придается исключительное значение; если величина стока от 50 до 80%, то — преимущественное; менее 50%—преобладающее. В результате у него получается 38 групп водного режима рек, которые объединяются в 12 типов. Эти типы следующие:

1. Амазонский тип — почти исключительно дождевое питание и преобладание осеннего стока, т. е. в те месяцы, которые в умеренном поясе считаются осенними (Амазонка, Рио-Негро, Голубой Нил, Конго и др.).

2. Нигерианский тип — преимущественно дождевое питание с преобладанием осеннего стока (Нигер, Луалаба, Нил и др.).

3. Меконгский тип — почти исключительно дождевое питание с преобладанием летнего стока (Меконг, верховья Мадейры, Мараньона, Парагвая, Параны и др.).

4. Амурский — преимущественно дождевое питание с преобладанием летнего стока (Амур, Витим, верховья Олекмы, Яны и др.).

5. Средиземноморский — исключительно или преимущественно дождевое питание и господство зимнего стока (Мозель, Рур, Темза, Агри в Италии, Альма в Крыму и др.).

6. Одерианский — преобладание дождевого питания и весеннего стока (По, Тисса, Одер, Морава, Эбро, Огайо и др.).

7. Волжский – в основном снеговое питание с преобладанием весеннего стока (Волга; Миссисипи, Москва, Дон, Урал, Тобол, Кама и др.).

8. Юконский — преобладающее снеговое питание и господство летнего стока (Юкон, Кола, Атабаска, Колорадо, Вилюй, Пясина и Др.).

9. Нуринский — преобладание снегового питания и почти исключительно весенний сток (Нура, Еруслан, Бузулук, Б. Узень, Ингулец и др.).

10. Гренландский — исключительно ледниковое питание и кратковременный сток летом.

11. Кавказский — преобладающее или преимущественно ледниковое питание и господство летнего стока (Кубань, Терек, Рона, Инн, Ааре и др.).

12. Лоанский — исключительное или преимущественное питание за счет подземных вод и равномерное распределение стока в течение года (р. Лоа в северной части Чили).

Многие реки, особенно те, которые имеют большую длину и большую площадь питания, могут оказаться отдельными своими частями в различных группах. Так, например, реки Катунь и Бия (от слияния которых образуется Обь) питаются главным образом талыми водами горных снегов и ледников с подъемом воды летом. В таежной зоне притоки Оби питаются талыми снеговыми и дождевыми водами с разливами весной. В низовьях Оби притоки относятся к рекам холодного пояса. Река Иртыш сама по себе имеет сложный характер. Все это, конечно, необходимо учитывать.

Половинкин, А.А. Основы общего землеведения/ А.А. Половинкин.- М.: Государственное учебно-педагогическое издательство министерства просвещения РСФСР, 1958.- 482 с.

Источник



ЗАДАЧА 11
егэ профиль
сортировка по сложности

Задачи разделены на уровни сложности. Задачи из любого уровня вполне реально встретить на настоящем экзамене ЕГЭ, более сложные встретятся если «не повезло».

Сложность 1 (легкие задачи)

    Мастер выполняет заказ на детали за 4 часа. Ученик мастера выполняет такой же заказ за 5 часов. За сколько часов выполнят девять таких заказов мастер и ученик, работая вместе?

Моторная лодка проплыла против течения реки 20 км. После этого мотор вышел из строя, и лодку отнесло течением реки на место старта. На весь путь туда и обратно лодка затратила 6 часов. Найдите скорость лодки в стоячей воде, если скорость течения реки 5 км/ч. Ответ дайте в км/ч.

В 5% раствор кислоты объемом 6 литров добавили 2 литра воды и 4 литра 9% раствора. Сколько процентов составляет концентрация кислоты в получившемся растворе?

Рубашка после двух подорожаний стала стоить 660 рублей, причем первый раз она подорожала на 10%, а второй раз — на 20%. Сколько стоила рубашка до первого подорожания?

Моторная лодка отчалила от пристани и проплыла против течения реки 40 км. После остановки на 30 минут лодка повернула обратно. В пункт отправления лодка приплыла через шесть с половиной часов после отплытия. Найдите скорость лодки в стоячей воде, если скорость течения реки 5 км/ч. Ответ дайте в км/ч.

Пуля, вылетев из ружья, пролетела 30 метров с постоянной скоростью и попала в мишень. Пробив мишень насквозь, пуля потеряла две трети своей скорости и, пролетев еще 10 метров, врезалась в отбойник. Найти начальную скорость пули в м/с, если время полета пули из ружья до отбойника составило 0,1 с.

Грузовая машина выехала из пункта А и должна доехать до пункта В в назначенное время. Однако ровно на середине пути ей пришлось остановиться на 25 минут из-за поломки. Чтобы прибыть в пункт В в назначенное время, машине пришлось увеличить скорость на 10 км/ч. Найдите скорость машины до поломки, если расстояние между А и В составляет 100 км.

В банке находится 5 литров 20-ти процентного раствора вещества. Сколько литров 50-ти процентного раствора того же вещества надо долить в банку, чтобы получился 44-х процентный раствор?

В начальный момент времени часы со стрелками показывают 8 часов 20 минут. Сколько раз до 12 часов 30 минут этого же дня минутная стрелка поравняется с часовой?

Моторная лодка проплыла по течению реки 10 км. После этого мотор вышел из строя, и лодку несло течением еще 2 километра. На весь путь лодка затратила 1,5 часа. Найдите скорость течения реки, если скорость лодки по течению реки 20 км/ч. Ответ дайте в км/ч.

Два друга Андрей и Сергей отвечают на одинаковые вопросы тестового экзамена. Андрей отвечает на 8 вопросов в час, Сергей на 6 вопросов в час. Экзамен они начали одновременно. Андрей ответил на все вопросы экзамена раньше Сергея на 40 минут. Сколько вопросов было в тестовом экзамене?

Весь путь путешественника разбит на три равных по длине отрезка. Первый отрезок пути путешественник прошел пешком со скоростью 5 км/ч. Второй отрезок пути проехал на лошади со скоростью 10 км/ч. Третий участок пути путешественник должен проплыть на плоту по реке. Какова скорость плота, если средняя скорость путешественника на всем пути оказалась равной 3,75 км/ч.

Пуля после попадания в мишень теряет две трети своей скорости и пролетев некоторое расстояние врезается в отбойник. В начальный момент выстрела расстояние от пули до отбойника составляет 200 метров, от мишени до отбойника – 50 метров. Какой должна быть начальная скорость пули в м/с, если средняя скорость пули на всем пути до отбойника оказалась равной 300 м/с.

При сушке абрикосов на солнце 85% первоначального веса испаряется и получается курага. Сколько килограммов абрикосов надо взять для получения 9 килограммов кураги?

Семь чисел образуют арифметическую прогрессию. Сумма первого и последнего равна 6, а сумма второго и третьего равна 0. Найдите пятое число.

Маша путь от своего дома до дома Мишки прошла со скоростью 100 метров/минуту, а обратно она ехала на велосипеде со скоростью 150 метров/минуту. Найдите среднюю скорость Маши на всем пути. Ответ дайте в метрах в минуту.

Пуля после попадания в мишень теряет две трети своей скорости и пролетев некоторое расстояние врезается в отбойник. В начальный момент выстрела расстояние от пули до отбойника составляет 100 метров. Начальная скорость пули – 800 м/с. На каком расстоянии (в метрах) от отбойника была установлена мишень, если средняя скорость пули на всем пути до отбойника оказалась равной 500 м/с.

Турист прошел четверть пути со скоростью 5 км/ч, потом по холмам он прошел еще четверть путь со скоростью 4 км/ч, затем еще четверть пути проехал на велосипеде со скоростью 20 км/ч и последнюю четверть пути проехал на попутном автобусе со скоростью 30 км/ч. Найдите среднюю скорость туриста на всем пути. Ответ дайте в км/ч.

Сложность 2 (средние по сложности задачи)

    Винни-Пух съедает банку меда за 4 часа. Его друг Пятачок съедает половину такой же банки меда за 8 часов. За сколько минут они съедят банку меда вместе?

Винни-Пух съел половину горшочка меда за 40 минут, после чего к нему зашел его друг Пятачок и оставшиеся полгоршочка они доели за 30 минут вместе. Винни-Пух подарил Пятачку на день рождение такой же горшочек меда. За сколько часов может съесть один Пятачок этот горшочек?

Прямолинейный путь букашки разбит на пять равных по длине частей. Скорость букашки на первом участке равна 0,25 м/с. Скорость на втором участке в два раза больше. Скорость букашки на каждом следующем участке в два раза больше чем на предыдущем. Найдите среднюю скорость букашки на всем пути. Ответ дайте в м/с и округлите до десятых.

Цена брюк на 20% больше цены джинсовой рубашки. Джинсовая рубашка стоит 750 рублей. Определите, на сколько процентов трое брюк дешевле четырех рубашек.

Первая труба наполняла бассейн в одиночку два часа. Затем включилась вторая и, проработав вместе еще 4 часа, они наполнили бассейн. Первая труба в одиночку наполняет бассейн в полтора раза быстрее чем вторая, также работающая одна. За сколько часов две трубы вместе наполнят бассейн?

Два велосипедиста одновременно стартуют из диаметрально противоположных точек круговой трассы и двигаются в одном направлении. Скорость первого в полтора раза больше скорости второго. Через сколько минут первый велосипедист догонит второго, если длина трассы 10 километров, а скорость второго велосипедиста равна 20 км/ч?

Первую половину пути катер прошел по течению узкой части реки с большой скоростью течения. После излучины русло реки расширилось, и течение стало в два раза медленнее. Найдите скорость течения в начале пути, если на первую половину потребовалось в 1,2 раза меньше времени. Скорость катера в стоячей воде 20 км/ч. Ответ дайте в км/ч.

Винни-Пух и Кролик должны съесть на время одинаковое количество горшочков с медом. Винни-Пух съедает 4 горшочка за 45 минут. Кролик съедает 6 горшочков за полтора часа. Винни-Пух съел все свои горшочки раньше Кролика на 1 час 15 минут. Сколько горшочков было у каждого?

Пароход длиной 100 метров и баржа длиной 200 метров двигаются по озеру параллельными курсами и в одном направлении. В начальный момент пароход находится позади баржи и расстояние от его носовой части до кормы баржи составляет 5 км. Корма парохода поравняется с носом баржи через 30 минут. Найти скорость баржи, если скорость парохода 25 км/ч. Ответ дайте в км/ч.

Читайте также:  Речка пионерка приозерский район

В емкости находится 5 литров 20% раствора соли. Какой объем сухой соли (в литрах) необходимо засыпать в емкость, чтобы концентрация соли в емкости стала 84%? Дайте ответ с учетом того, что при засыпании сухой соли в емкость 20% соли просыпается мимо.

В некотором магазине рубашка дорожала дважды, первый раз на 12%, а второй раз — на 20%. Сколько рублей стоила рубашка до первого подорожания, если в общей сложности она подорожала на 86 рублей?

Из пунктов A и B, расстояние между которыми 87,5 км, одновременно навстречу друг другу выехали два автомобиля. Первый ехал со скоростью 50 км/ч. Каждый из автомобилей, повстречав друг друга первый раз, не останавливаясь, поехал дальше. Первый автомобиль, доехав до пункта В, развернулся и поехал обратно. Второй автомобиль, доехав до пункта А, остановился на полчаса и также поехал обратно. Второй раз автомобили повстречались через 3 часа после отправления из начальных пунктов. Найдите скорость (в км/ч) второго автомобиля.

Машина с почтой выехала из пункта А и должна доехать до пункта В в назначенное время. Однако, проехав 5,5 километров, машина была вынуждена вернуться обратно, чтобы взять позабытую посылку. Чтобы прибыть в пункт В в назначенное время, машине пришлось увеличить скорость на 5 км/ч. Найдите запланированную скорость машины, если расстояние между А и В составляет 132 км.

В первой банке объемом 5 литров находится раствор некторого вещества. Во второй банке объемом 8 литров находится другой раствор того же вещества. Если слить вместе обе банки, то в получившимся растворе концентрация вещества будет 12%. Если бы в первой банке было 10 литров такого же раствора что был в ней изначально, а во второй банке ничего не изменилось, то в результате получился бы раствор с концентрацией 10%. Найдите концентрацию вещества во второй банке. Ответ дайте в процентах.

В первом и во втором баках одинакового объема находится 15% растворы некоторого вещества. В третьем баке находится 30% раствор этого же вещества. Если слить вместе все три бака, то концентрация вещества будет 25%. Во сколько раз объем первого бака меньше объема третьего?

Сухогруз с собственной скоростью 15 км/ч отплыл от причала А и плыл по течению реки два часа, после чего сообщил о поломке двигателя. От причала А сразу отплыл буксир длиной 100 метров и с собственной скоростью 20 км/ч. Через час после отплытия буксир еще не догнал сухогруз, и расстояние между его носом и кормой сухогруза составляло 16 км. Найдите скорость течения реки, если сухогруз после поломки дрейфовал со скоростью течения. Ответ выразите в км/ч. (В момент отплытия обоих судов у причала находится корма (задняя часть судна).

Пешеход прошел четверть пути со скоростью 6 км/ч, потом по неровной дороге он прошел еще четверть путь со скоростью 4 км/ч, затем еще четверть пути проехал на велосипеде со скоростью 15 км/ч и последнюю четверть пути проехал на маршрутке со скоростью 60 км/ч. Найдите, на сколько км/ч средняя скорость на первом и втором участках (рассматриваются как один путь) меньше средней скорости на всем пути.

Два пешехода вышли навстречу друг другу из пунктов А и В, расстояние между которыми 10 км. Через два часа они встретились, потратили на разговор 15 минут и пошли дальше каждый в своем старом направлении. Найдите скорость второго пешехода, если первый прибыл в пункт В через 2 часа 55 минут после выхода из А. Ответ дайте в в км/ч.

В первом сосуде находится 25% раствор спирта. Во втором сосуде находится 20% раствор спирта. Если слить вместе эти два раствора и добавить 2 литра чистого спирта, то полученная концентрация будет 26%. Если же слить вместе в два раза больший объем 25% раствора тот же объем 20% и добавить 2 литра чистой волы, то концентрация спирта будет такой же, как во втором сосуде. Найдите объем меньшего сосуда. Ответ дайте в литрах.

Моторная лодка отчалила от пристани и проплыла по течению реки 61,5 км. После остановки на 30 минут лодка повернула обратно. Через 5,5 часов после начала движения от пристани лодке оставалось плыть до нее 30,5 километров. Скорость лодки в стоячей воде 18 км/ч. Найти скорость течения реки, если известно, что она менее 3 км/ч. Ответ дайте в км/ч.

В первом баке находится 10% раствор некоторого вещества. Во втором баке находится 30% раствор этого же вещества. Если слить вместе два бака 10% раствора, один бак 30% раствора и добавить еще два литра воды, то концентрация вещества будет 20%. На сколько литров объем первого бака меньше объема второго?

Если моторная лодка движется против течения реки от пристани А до пристани В, то она преодолевает этот путь за 8 часов. Отплыв от пристани А к пристани В, лодка не доплыла до В 20 км и повернула обратно, и через 11 часов 5 минут вернулась в пункт А. Найти скорость лодки в стоячей воде, если скорость течения реки 2 км/ч.

Один мальчик красит картинку за 4 мин, а второй мальчик – за 6 мин. Они решили вместе покрасить картинку. Есть два способа покрасить картинку вдвоем: первый способ – каждый красит ровно половину картинки (и закончивший красить свою половину просто ждет другого), второй способ – красить всю картинку вместе от начала до конца. Насколько больше минут потребуется для покраски картинки первым способом?

Два соседних эскалатора одинаковой длины движутся один вверх, другой вниз с одинаковыми скоростями. Человек, стоя неподвижно, поднимается вверх по одному эскалатору за 12 секунд. Если человек идет вниз по второму (который двигается вниз) эскалатору, то это занимает 8 секунд. Сколько секунд потратил бы этот же человек, если бы поднимался вверх по неподвижному эскалатору? Скорость человека считается постоянной.

Четыре числа образуют возрастающую геометрическую прогрессию. Сумма первого и четвертого равна 56. Сумма второго и третьего равна 24. Найдите сумму первых двух.

Несколько чисел образуют арифметическую прогрессию. Разность прогрессии равна 2, а сумма всех членов прогрессии равна 108. Сколько членов в этой прогрессии, если сумма первого и пятого равна 16?

Первый конвейер выпускает в полтора раза больше упаковок орехов в час, чем второй. Работая вместе, эти два конвейера выполнили половину некоторого заказа, затем первый аппарат сломался и работу над заказом продолжил один второй. Из скольких упаковок орехов состоял весь заказ, если известно, что второй аппарат в итоге изготовил на 840 упаковок больше первого?

Две команды велосипедистов, состоящие каждая из двух человек, стартуют одновременно и в одном направлении из одной точки круговой трассы. Скорость первого номера первой команды больше скорости первого номера второй команды на 2 км/ч. Проехав по 45 минут каждый, первые номера каждой команды сменились вторыми. Найдите на сколько км/ч скорость второго номера второй команды больше скорости второго номера первой команды, если до финиша оба вторых номера доехали одновременно и ехали 30 минут.

Цена трех кепок меньше цены двух футболок на 45%. Разница в стоимости между тремя футболками и двумя кепками составляет 1020 рублей. Найдите на сколько рублей футболка дороже кепки.

Сложность 3 (более сложные задачи)

    Из пунктов A и B, расстояние между которыми 140 километров, одновременно навстречу друг другу выехали два автомобиля. Первый ехал со скоростью 30 км/ч, второй — со скоростью 40 км/ч. Каждый из автомобилей, повстречав друг друга первый раз, не останавливаясь, поехал дальше. Доехав до пунктов В и А соответственно, они развернулись и поехали обратно. На каком расстоянии от пункта В они встретятся второй раз?

Человек поднимается по стоящему эскалатору за 12 секунд. Если человек стоит на поднимающемся вверх эскалаторе, то он поднимется за 8 секунд. За сколько секунд этот же человек поднимется, если будет идти по движущемуся вверх эскалатору?

Два велосипедиста стартуют одновременно и в одном направлении из одной точки круговой трассы длины 10 км. Скорость первого из них на 3 км/ч больше скорости второго. Через какое время первый велосипедист обгонит второго на полтора круга? Ответ дайте в минутах.

Два велосипедиста стартуют одновременно и в одном направлении из одной точки круговой трассы длины 10 км. Первый велосипедист проезжает круг на 6 минут быстрее второго. Найдите скорость первого велосипедиста в км/ч, если он обгоняет второго на круг за 2 часа.

В гости к Кролику пришли Пятачок и Винни-Пух. Кролик планирует угощать гостей медом. Винни за минуту съедает 0,2 горшочка с медом, Кролик – 1/8 горшочка, а Пятачок – всего 1/40. Кролик уже знает, что если Винни-Пух съест хоть немного больше 4-х горшочков меда, то застрянет. Какое максимальное количество горшочков может поставить на стол Кролик, если он не хочет, чтобы Винни-Пух застрял? В задаче предполагается, что все трое начинают есть одновременно. Каждый берет себе по горшочку и ест только из него, а как только горшочек у кого-то заканчивается, тот берет себе следующий при его наличии.

Четыре мастера выкладывают стену за 4 часа. Если работают первый, второй и третий мастера, то они сделают эту работу за 6 часов, а второй, третий и четвертый мастера выполнят тот же объем работы за 5 часов. За сколько часов справятся с работой первый и четвертый мастера?

При старте из одной точки и в одном направлении по круговой трассе первый велосипедист обгоняет второго каждые два часа. Через сколько минут первый велосипедист второй раз обгонит второго, если они стартовали из диаметрально противоположных точек в одном направлении?

Пароход длиной 80 метров и баржа длиной 120 метров двигаются по озеру параллельными курсами и в одном направлении. В начальный момент пароход находится позади баржи и расстояние от его носовой части до кормы баржи составляет 9 километров 800 метров. Если пароход будет двигаться с той же скоростью, то его корма поравняется с носом баржи через 2 часа. Если же пароход увеличит скорость в полтора раза, то его нос поправляется с кормой сухогруза через 39,2 минуты. Найдите скорость баржи. Ответ дайте в км/ч.

Два пешехода вышли навстречу друг другу из пунктов А и В, расстояние между которыми 10 км. Через два часа они встретились, второй сразу пошел дальше, а первый потратил 10 минут на разговор по телефону и также отправился в своем старом направлении. Найдите скорость второго пешехода, если он прибыл в пункт А на 1 час 30 минут позже, чем первый прибыл в В. Ответ дайте в в км/ч.

Первый и второй велосипедисты выехали навстречу друг другу из различных пунктов А и В соответственно. Они встретились на расстоянии 18 км от В и, не останавливаясь, поехали дальше. Доехав до пунктов В и А соответственно, они развернулись и поехали обратно. Второй раз они встретились на расстоянии 24 км от А. Найти расстояние между пунктами А и В.

Пуля, вылетев из ружья, пролетела 28 метров с постоянной скоростью и попала в мишень. Пробив мишень насквозь, пуля потеряла часть своей скорости и, пролетев еще 15 метров, врезалась в отбойник. Время полета пули из ружья до отбойника составило 0,08 секунды. Если бы от мишени до отбойника было бы не 15, а 6 метров, то общее время полета пули составило 0,06 секунды. Найти отношение скорости пули после мишени к ее скорости до мишени (считается, что эта величина постоянна).

В гости к Кролику пришли Пятачок и Винни-Пух. Винни за минуту съедает 0,2 горшочка с медом, Пятачок – 1/9 горшочка, а Кролик – всего 1/45. Кролик уже знает, что если Винни-Пух съест больше 4-х горшочков меда, то застрянет. Какое максимальное количество горшочков может поставить на стол Кролик, если он не хочет, чтобы Винни-Пух застрял? В задаче предполагается, что все трое начинают есть одновременно и едет все вместе из одного горшочка, а как только он заканчивается – берут следующий.

Доход некоторой семьи складывается из зарплаты мужа, жены и сына-студента. Если зарплату мужа увеличить на 50%, то общий доход семьи увеличится на 32%. Если же зарплату жены уменьшить вдвое, а зарплату мужа уменьшить на 25%, то доход семьи уменьшится на 32%. Во сколько раз зарплата мужа больше зарплаты жены.

Доход некоторой семьи складывается из зарплаты мужа, жены и дочери-студентки. Если зарплату мужа увеличить в полтора раза, а стипендию дочери увеличить в 6 раз, то общий доход семьи увеличится на 52%. Если же зарплату жены уменьшить вдвое, а зарплату мужа уменьшить на 50%, то доход семьи уменьшится на 48%. Какой процент в общем доходе семьи составляет зарплата жены.

Первая бригада рабочих прокладывает дорогу за 3 часа. Если к этой бригаде присоединить вторую бригаду, то вместе они прокладывают дорогу в полтора раза длиннее за 2 часа. Теперь эти бригады с разных сторон начинают строить дорогу длиной 225 км. Сколько километров дороги придется построить второй бригаде?

В одной емкости находится 90 мл кофе, в другой емкости 80 мл молока. Из второй емкости 60 мл молока перелили в первую. Затем из первой емкости 80 мл смеси молока и кофе перелили во вторую. Что больше: концентрация молока в первой емкости или кофе во второй емкости? В ответе запишите большую концентрацию, выраженную в процентах.

Для изготовления изюма взяли некоторое количество винограда и высушили на солнце. Известно, что при сушке на солнце виноград теряет 80% первоначального веса. Половину полученной партии изюма поместили в герметичную упаковку и подготовили к транспортировке. Во время транспортировки упаковка была повреждена, и изюм вобрал в себя влагу из воздуха. В результате его масса увеличилась на 10%. После транспортировки изюм взвесили и получили 8,8 кг. Сколько килограмм винограда изначально высушили на солнце?

Два соседних эскалатора одинаковой длины движутся один вверх, другой вниз с одинаковыми скоростями. Человек, стоя неподвижно, поднимается вверх по одному эскалатору за 12 секунд. Если человек идет вниз по второму (который двигается также вниз) эскалатору, то это занимает 8 секунд. В некоторый день скорость эскалатора уменьшили в два раза; сколько секунд потратит человек в этот день при подъеме вверх по движущемуся вверх эскалатору? Скорость человека считается постоянной.

Несколько чисел образуют арифметическую прогрессию. Сумма первого и пятого членов прогрессии равна 18, а сумма второго и восьмого 46. Сколько членов в этой прогрессии, если сумма всех членов прогрессии равна 265?

Баржа длиной 80 метров и пароход идут параллельными курсами в одном направлении. Капитан парохода издал три гудка с интервалом в 5 минут между каждым гудком. Известно, что в момент первого гудка пароход отстает от баржи и расстояние между его носом и кормой баржи равно 120 метров. В момент второго гудка нос парохода поравнялся с носом баржи. А в момент третьего гудка расстояние между носом баржи и кормой парохода равно 150 метров. Найдите длину парохода. Ответ укажите в метрах.

Первый аппарат изготавливает в час в два раза больше кексов, чем второй. Работая вместе, эти два аппарата выполнили половину заказа, а затем первый аппарат сломался, и работу над заказом продолжил только второй. Известно, что второй аппарат в итоге изготовил на 700 кексов больше первого. Общее время выполнения заказа составило 20 часов. На сколько кексов больше в час изготавливал первый аппарат по сравнению со вторым?

Скорость парохода (длиной 100 метров) больше скорости баржи (длиной 250 метров) на 2,5 км/ч. В начальный момент времени пароход и баржа двигаются параллельными курсами навстречу друг другу, и расстояние между их носовыми частями – 800 метров. Какова скорость баржи, если через полчаса расстояние между их кормовыми частями (крайняя задняя точка) частями составило 18,1 км. Ответ дайте в км/ч.

Две команды велосипедистов, состоящие каждая из двух человек, стартуют одновременно и в одном направлении из одной точки круговой трассы. Скорость первого номера первой команды больше скорости первого номера второй команды на 2 км/ч. Через 90 минут первый номер догнал второго и, проехав еще 15 минут после этого, первые номера каждой команды сменились вторыми. Найдите на сколько км/ч скорость второго номера второй команды больше скорости второго номера первой команды, если до финиша оба вторых номера доехали одновременно и ехали 1,5 часа.

Если два велосипедиста стартуют одновременно и в одном направлении из диаметрально противоположных точек круговой трассы длиной 10 км, то один догоняет другого за 20 минут. Если же они стартуют одновременно и в разных направлениях из диаметрально противоположных точек этой же трассы, то они встречаются пятый раз через 50 минут. Найдите скорости велосипедистов. В ответе укажите большую из них, ответ дайте в км/ч.

Первый велосипедист стартовал из точки А круговой трассы длиной 24 км. Через 10 минут из точки В, диаметрально противоположной точке А, в том же направлении выехал второй велосипедист. Найдите скорость (в км/ч) первого велосипедиста, если известно, что он догнал второго через 15 минут после начала движения второго и прибыл в точку А раньше второго велосипедиста на 30 минут.

Первый велосипедист стартовал из точки А круговой трассы длиной 20 км. Через 5 минут из точки В, диаметрально противоположной точке А, навстречу первому выехал второй велосипедист. Найдите скорость (в км/ч) второго велосипедиста, если известно, что велосипедисты встретились первый через 10 минут после выезда второго, а второй раз – через 39 минут после выезда первого.

Имеется некоторый раствор соли в воде. Вес раствора 5 кг и концентрация соли в нем равна 20%. Сколько килограмм соли необходимо засыпать в емкость, чтобы концентрация соли стала 65%? Дайте ответ с учетом того, что при засыпании соли в емкость 10% соли просыпается мимо, и, кроме этого, засыпаемая соль уже имеет в себе 10% воды.

Обычно Иван Иванович проходит треть своего пути со скоростью 5 км/ч; далее дорога идет в гору, и следующую треть Иван Иванович проходит со
скоростью 3 км/ч. Последнюю треть пути Иван Иванович шел со своей обычной скоростью 6 км/ч, однако на середине этого участка полил дождь и Иван Иванович сел на автобус и за 9 минут доехал до конечной точки маршрута. Найдите среднюю скорость Ивана Ивановича на всем пути, если обычно (с такой же скоростью на каждом участке, но без проезда на автобусе) время в пути составляет 2,1 часа. Ответ укажите в км/ч.

Некоторая материальная точка движется прямолинейно. На первом участке ее скорость равна 1 м/с. На втором (таком же по длине) участке ее скорость составляет 2 м/с. На третьем (той же длины что и первые два) участке ее скорость 4 м/с. Средняя скорость материальной точки на всем пути оказалась равной (5∙2^4)/31 м/с. Сколько всего было участков, если они все по длине одинаковы и скорость каждый раз возрастает в два раза.

Источник

Как найти скорость течения реки: методика и рекомендации. Примеры решения задач

Многие люди хотя бы один раз в своей жизни путешествовали по реке на лодке, байдарке или катере. Для таких путешествий важно знать, с какой скоростью течет вода в реке, чтобы иметь возможность определить необходимое для перемещения на определенное расстояние время. В данной статье рассмотрим вопрос, как найти скорость течения реки, а также решим две физические задачи по данной теме.

Особенности течения воды в реках

Многие замечали, что одни реки текут медленно, и поверхность воды является гладкой. Обычно это крупные реки, например, Дон или Волга. Такое течение с точки зрения физики называется ламинарным, то есть слои жидкости перемещаются по прямым линиям и не смешиваются друг с другом. Более мелкие же речушки в некоторых местах буквально «бурлят». Этот тип течения характерен для рек горной местности. Он называется турбулентным. В отличие от ламинарного, здесь мелкие объемы воды перемещаются по хаотичным траекториям, на поверхности наблюдаются водовороты и пена.

Русло реки также оказывает существенное влияние на скорость течения. Так, известно, что вблизи берега и дна вода течет медленнее, чем в центральной части русла внутри ее объема. При своем движении слои воды задерживаются препятствиями, в виде неоднородностей дна и берегов, за счет трения о них. Причем каменистое дно уменьшает скорость перемещения воды сильнее, чем дно глинистое или песчаное.

Ширина русла и водоносность

Для более глубокого понимания вопроса, как найти скорость течения реки, важно знать еще один момент. Дело в том, что одна и та же река в разных местах может течь с различной скоростью. Причиной является изменение площади сечения ее русла, которое внешне связано с изменение ширины. Справедливости ради отметим, что не только изменение ширины, но и колебания в глубине влияют на быстроту течения воды (чем глубже, тем медленнее).

В виду сказанного выше, о скорости перемещения воды в реке имеет смысл говорить, если на достаточно длительном участке (километры и более) параметры ее русла колеблется незначительно, и река не имеет на этом участке притоков.

Более надежной характеристикой для любой реки является ее водоносность. Под водоносностью понимают объем воды, проходящий через вертикальное сечение русла за единицу времени. Водоносность не зависит от параметров русла, однако, она так же, как и скорость, изменится, если на рассматриваемом участке реки имеется приток.

В данной статье мы ограничимся предоставленной информацией о водоносности и перейдем к вопросу, как найти скорость течения реки.

Практический метод определения скорости воды в реке

Рассмотрим простую практическую методику, которая отвечает на вопрос, как находить скорость течения реки.

В первую очередь необходимо выбрать участок реки, где движение воды будет ламинарным, и русло не будет менять своей ширины. Затем, на берегу следует забить колышек. Он будет служить начальной отметкой. От первого колышка, используя измерительную ленту, следует отсчитать вдоль берега расстояние 10 метров, затем, забить второй колышек. Он будет конечной отметкой. Все подготовительные работы сделаны. Теперь можно переходить непосредственно к измерениям.

Как находить скорость течения реки? Для этого понадобится какой-нибудь легкий предмет, который может плавать. Например, маленькая палочка, шишка, лист бумаги, перо птицы и так далее. Предмет следует бросить в воду напротив первого колышка. При этом необходимо включить секундомер. Как только предмет, двигаясь по реке, достигнет второго колышка, секундомер нужно остановить, и зафиксировать измеренное время t.

Описанные эксперимент рекомендуется повторить несколько раз (4-5). Затем, нужно рассчитать среднее значение измеренного времени. Обозначим его t¯. Оно равно:

Источник

Adblock
detector