Меню

От спортивного лагеря до озера туристы шли 3 часа со скоростью 6 км ч

Алгебра 8 Мордкович (упр. 30.1 — 30.45)

Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович ( 2018-2020 ). § 30. Рациональные уравнения как математические модели реальных ситуаций. ОТВЕТЫ на упражнения 30.1 — 30.45. ГЛАВА 4. КВАДРАТНЫЕ УРАВНЕНИЯ. Нажмите на спойлер, чтобы посмотреть ответ на задание.
Вернуться в ОГЛАВЛЕНИЕ.

Алгебра 8 Мордкович (упр. 30.1 — 30.45)

§ 30. Рациональные уравнения как математические модели реальных ситуаций

№ 30.1. Велосипедист проехал 18 км с определенной скоростью, а оставшиеся 6 км со скоростью на 6 км/ч меньшей первоначальной. Найдите скорость велосипедиста на втором участке пути, если на весь путь он затратил 1,5 ч.

№ 30.2. Первый пешеход прошел 6 км, а второй пешеход 5 км. Скорость первого пешехода на 1 км/ч меньше, чем скорость второго. Найдите скорость первого пешехода, если известно, что он был в пути на 30 мин больше второго.

№ 30.3. Расстояние 30 км один из двух лыжников прошел на 20 мин быстрее другого. Скорость первого лыжника была на 3 км/ч больше скорости второго. Какова была скорость каждого лыжника?

№ 30.4. Числитель дроби на 1 меньше знаменателя. Если эту дробь сложить с обратной ей дробью, то получится 2 1/12. Найдите исходную дробь.

№ 30.5. Два автомобиля выезжают одновременно из одного города в другой. Скорость первого автомобиля на 10 км/ч больше скорости второго, и поэтому первый приезжает на место на 1 ч раньше второго. Найдите скорость каждого автомобиля, зная, что расстояние между горо

№ 30.6. Из пункта А в пункт В, удаленный от А на расстояние 100 км, отправился междугородный автобус. Из-за ненастной погоды он ехал со скоростью на 10 км/ч меньшей, чем предполагалось по расписанию, и поэтому прибыл в пункт В с опозданием на 30 мин. С какой скор

№ 30.7. Велосипедист ехал с определенной скоростью из деревни на станцию, находящуюся от деревни на расстоянии 32 км. Обратно он ехал со скоростью на 1 км/ч большей, затратив на обратный путь на 8 мин меньше, чем на путь от деревни до станции. С какой скоростью е

№ 30.8. Увеличив скорость на 10 км/ч, поезд сократил на 1 ч время, затрачиваемое им на прохождение пути в 720 км. Найдите первоначальную скорость поезда.

№ 30.9. Велосипедист ехал с определенной скоростью 16 км от города до турбазы. Возвращаясь обратно, он снизил скорость на 4 км/ч. На весь путь туда и обратно велосипедист затратил 2 ч 20 мин. Найдите скорость, с которой велосипедист ехал от турбазы до города.

№ 30.10. Автобус проехал с постоянной скоростью 40 км от пункта А до пункта В. Возвращаясь обратно со скоростью на 10 км/ч меньшей первоначальной, он затратил на 20 мин больше, чем на путь от А до В. Найдите первоначальную скорость автобуса.

№ 30.11. На путь, равный 18 км, велосипедист затратил времени на 1 ч 48 мин меньше, чем пешеход, так как проезжал за 1 ч на 9 км больше, чем проходил пешеход. Каковы скорости велосипедиста и пешехода?

№ 30.12. Из села в город одновременно отправились автомобилист и мотоциклист. Расстояние от города до села 90 км. С какими скоростями двигались автомобиль и мотоцикл, если автомобилист прибыл в город на полчаса раньше, чем мотоциклист, а скорость его была на 15 км

№ 30.13. Автобус–экспресс отправился от автовокзала в аэропорт, находящийся от автовокзала на расстоянии 40 км. Через 10 мин вслед за автобусом выехал пассажир на такси. Скорость такси на 20 км/ч больше скорости автобуса. Найдите скорости такси и автобуса, если в

№ 30.14. Колонне автомашин было дано задание перевезти со склада в речной порт 60 т груза. В связи с неблагоприятной погодой на каждую машину пришлось грузить на 0,5 т меньше, чем предполагалось, и поэтому колонну дополнили еще четырьмя машинами. Сколько машин был

№ 30.15. Мастерская к определенному сроку должна была выпустить 5400 пар обуви. Фактически она выпускала в день на 30 пар больше плана и выполнила заказ на 9 дней раньше срока. За сколько дней был выполнен заказ?

№ 30.16. Моторная лодка прошла 5 км по течению реки и 6 км против течения, затратив на весь путь 1 ч. Скорость течения реки равна 3 км/ч. Найдите скорость движения лодки по течению реки.

№ 30.17. Члены школьного кружка натуралистов отправились на катере собирать лекарственные травы. Проплыв вниз по течению реки 35 км, они сделали трехчасовую остановку, после чего вернулись назад. Определите скорость катера в стоячей воде, если все путешествие заня

№ 30.18. Моторная лодка прошла 54 км по течению реки и 42 км против течения за то же время, что она проходит 96 км в стоячей воде. Найдите скорость лодки в стоячей воде, если скорость течения реки равна 3 км/ч.

№ 30.19. Турист проплыл на байдарке 24 км по озеру и 9 км против течения реки за то же время, какое понадобилось ему, чтобы проплыть по течению 45 км. С какой скоростью плыл турист по озеру, если скорость течения реки равна 2 км/ч?

№ 30.20. Катер прошел 27 км по течению реки и 42 км против течения, затратив на путь по течению на 1 ч меньше, чем на путь против течения. Какова скорость катера против течения, если скорость течения реки равна 3 км/ч?

№ 30.21. Лодочник проплыл 3 км по течению реки и 3 км против течения за то же время, за которое плот мог бы проплыть 4 км по течению. Собственная скорость лодки равна 6 км/ч. Найдите скорость течения реки.

№ 30.22. Прогулочный теплоход отправился от пристани А к пристани В вниз по течению реки. После получасовой стоянки в B он отправился обратно и через 8 ч после отплытия из А вернулся к той же пристани. Какова собственная скорость теплохода, если расстояние между п

№ 30.23. Моторная лодка прошла по течению реки расстояние 6 км, затем по озеру 10 км, затратив на весь путь 1 ч. С какой скоростью она шла по озеру, если скорость течения реки равна 3 км/ч?

№ 30.24. Расстояние 210 км катер проходит по течению реки на 4 ч быстрее, чем против течения. Определите собственную скорость катера, если известно, что скорость течения реки равна 3 км/ч.

№ 30.25. Моторная лодка прошла 20 км против течения реки и 14 км по озеру, затратив на путь по озеру на 1 ч меньше, чем на путь по реке. Скорость течения реки равна 4 км/ч. Найдите скорость хода лодки против течения.

№ 30.26. Два поля имеют общую площадь 20 га. С первого поля убрали 550 т, а со второго 540 т картофеля. Сколько тонн картофеля собирали с 1 га каждого поля, если с 1 га первого поля собирали на 10 т меньше, чем с 1 га второго поля?

№ 30.27. Токарь должен был обработать 120 деталей к определенному сроку. Применив новый резец, он стал обтачивать в час на 20 деталей больше и поэтому закончил работу на 1 ч раньше срока. Сколько деталей он должен был обрабатывать по плану?

№ 30.28. Бригада должна была изготовить 120 изделий к определенному сроку. Однако она изготовляла в день на 2 изделия больше, чем предполагалось по плану, и поэтому закончила работу на 3 дня раньше срока. Сколько изделий в день должна была изготовлять бригада по п

№ 30.29. Знаменатель обыкновенной дроби больше ее числителя на 3. Если к числителю прибавить 7, а к знаменателю 5, то дробь увеличится на 1/2. Найдите эту дробь.

№ 30.30. Числитель несократимой обыкновенной дроби на 5 меньше ее знаменателя. Если числитель уменьшить на 2, а знаменатель увеличить на 16, то дробь уменьшится на 1/3. Найдите эту дробь.

№ 30.31. Числитель обыкновенной дроби на 1 меньше ее знаменателя. Если из числителя и знаменателя вычесть 1, то дробь уменьшится на 1/12. Найдите эту дробь.

№ 30.32. Через два часа после выхода из А автобус был задержан на 30 мин и, чтобы прибыть в B по расписанию, должен был увеличить скорость на 5 км/ч. Найдите первоначальную скорость автобуса, если известно, что расстояние между пунктами А и В равно 260 км.

№ 30.33. Велосипедист проехал 30 км от города до турбазы. На обратном пути он ехал 2 ч с той же скоростью, а затем на 3 км/ч быстрее и затратил на обратный путь на 6 мин меньше, чем на путь из города до турбазы. Какое время затратил велосипедист на обратный путь?

№ 30.34. Велосипедист рассчитывал проехать по маршруту ВС за 2 ч. Однако когда до пункта С оставалось 6 км, из–за встречного ветра он снизил скорость на 3 км/ч и прибыл в пункт С на 6 мин позже, чем рассчитывал. Чему равна длина маршрута ВС?

№ 30.35. Пешеход прошел расстояние от пункта С до пункта М за 3 ч. Возвращаясь, он первые 16 км шел с той же скоростью, а затем снизил скорость на 1 км/ч, вследствие чего затратил на обратный путь на 4 мин больше, чем на путь из С в М. Чему равно расстояние между

№ 30.36. Поезд должен был пройти 54 км. Пройдя 14 км, он был задержан у семафора на 10 мин. Увеличив после этого скорость на 10 км/ч, он прибыл на место назначения с опозданием на 2 мин. Определите первоначальную скорость поезда.

№ 30.37. Расстояние между станциями А и В равно 240 км. Из В по направлению к А вышел поезд. Через 30 мин навстречу ему из А вышел другой поезд, скорость которого на 12 км/ч больше скорости первого поезда. Найдите скорости поездов, если известно, что они встретили

№ 30.38. Расстояние по реке между пристанями равно 21 км. Отправляясь от одной пристани к другой, катер возвращается обратно через 4 ч, затрачивая из этого времени 30 мин на стоянку. Найдите собственную скорость катера, если скорость течения реки равна 2,5 км/ч.

№ 30.39. Турист проплыл на байдарке 15 км против течения реки и 14 км по течению, затратив на все путешествие столько же времени, сколько ему понадобилось бы, чтобы проплыть по озеру 30 км. Зная, что скорость течения реки равна 1 км/ч, найдите скорость движения ту

№ 30.40. Для перевозки 180 туристов было заказано несколько автобусов. Однако два автобуса не прибыли, а туристов приехало на 8 человек больше, чем ожидалось. Поэтому пришлось в каждом автобусе разместить на 17 человек больше, чем предполагалось. Сколько туристов

№ 30.41. Бригада трактористов к определенному сроку должна была вспахать 1800 га. Ежедневно перевыполняя план на 25 га, уже за 4 дня до срока бригада не только выполнила задание, но и вспахала дополнительно 200 га. Какова была ежедневная норма работы бригады по пл

№ 30.42. Расстояние между городами равно 44 км. Из этих городов навстречу друг другу выходят одновременно два пешехода и встречаются через 4 ч. Если бы первый вышел на 44 мин раньше второго, то их встреча произошла бы в середине пути. С какой скоростью идет каждый

№ 30.43. Велосипедист проехал 96 км на 2 ч быстрее, чем предполагал. При этом за каждый час он проезжал на 1 км больше, чем намеревался проезжать за 1 ч 15 мин. С какой скоростью ехал велосипедист?

№ 30.44. В сплав золота с серебром, содержащий 80 г золота, добавили 100 г золота. В результате содержание золота в сплаве увеличилось на 20 %. Сколько граммов серебра в сплаве?

№ 30.45. В сплав меди и цинка, содержащий 5 кг цинка, добавили 15 кг цинка, после чего содержание цинка в сплаве повысилось на 30 %. Какова первоначальная масса сплава, если известно, что в нем меди было больше, чем цинка?

Вы смотрели: Алгебра 8 класс. Часть 2 (Задачник) УМК Мордкович (2018-2020). ГЛАВА 4. КВАДРАТНЫЕ УРАВНЕНИЯ. § 30. Рациональные уравнения как математические модели реальных ситуаций. ОТВЕТЫ на упражнения 30.1 — 30.45. Вернуться в ОГЛАВЛЕНИЕ.

Источник

От спортивного лагеря до озера туристы шли 3 часа со скоростью 6 км ч

Коля летом отдыхает у дедушки и бабушки в деревне Марьевке. Коля с дедушкой собираются съездить на велосипедах в село Сосновое на железнодорожную станцию. Из Марьевки в Сосновое можно проехать по прямой лесной дорожке. Есть более длинный путь по шоссе — через деревню Николаевку до деревни Запрудье, где нужно повернуть под прямым углом направо на другое шоссе, ведущее в Сосновое. Есть и третий маршрут: в Николаевке можно свернуть на прямую тропинку, которая идёт мимо озера прямо в Сосновое.

По шоссе Коля с дедушкой едут со скоростью 20 км/ч, а по лесной дорожке и тропинке 15 км/ч. Расстояние по шоссе от Марьевки до Николаевки равно 12 км, от Марьевки до Запрудья — 20 км, а от Запрудья до Соснового 15 км.

Задание 1. Пользуясь описанием, определите, какими цифрами на плане обозначены населённые пункты. В ответ запишите полученную последовательность четырёх цифр.

В тексте задания сказано, что из Марьевки в Сосновое можно проехать по шоссе через деревню Николаевку до деревни Запрудье, где нужно повернуть под прямым углом направо на другое шоссе, ведущее в Сосновое. Получаем номера населенных пунктов: 4 – Марьевка; 2 – Сосновое; 3 – Николаевка; 1 – Запрудье.

Ответ: 1432

Задание 2. На сколько процентов скорость, с которой едут Коля с дедушкой по тропинке, меньше их скорости по шоссе?

По шоссе Коля с дедушкой едут со скоростью v1 = 20 км/ч, а по лесной дорожке и тропинке v2 = 15 км/ч. Отношение скоростей, равно:

Значит, скорость v2 составляет 75% от скорости v1 и скорость v2 на 100-75=25% меньше скорости v1.

Задание 3. Сколько минут затратят на дорогу Коля с дедушкой, если поедут на станцию через Запрудье?

Путь через станцию Запрудье составляет S=20+15=35 км, а их скорость v=20 км/ч. Значит, они затратят на весь путь:

или, учитывая, что 1 ч = 60 минут,

1,75∙60 = 105 минут.

Задание 4. Найдите расстояние от д. Николаевка до с. Сосновое по прямой. Ответ дайте в километрах.

Прямая дорога – это гипотенуза прямоугольного треугольника с катетами 20-12=8 км и 15 км. По теореме Пифагора получаем расстояние по прямой, равное

Задание 5. Определите, на какой маршрут до станции потребуется меньше всего времени. В ответе укажите, сколько минут потратят на дорогу Коля с дедушкой, если поедут этим маршрутом.

Рассмотрим еще два маршрута (помимо шоссе, рассмотренного в задании 3):

1) по прямой из Марьевки в Сосновое путь равен км и скорость v=15 км/ч. Получаем время в пути (в минутах):

2) из Марьевки до Николаевки (S=12 км; v=20 км/ч) и по прямой до Соснового (S2=17 км; v2 = 15 км/ч), получаем (минуты):

Наименьшее время равно 100 минут.

Ответ: 100.

  • 1-5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • Вариант 1
  • Вариант 1. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 2
  • Вариант 2. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 3
  • Вариант 3. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 25
    • 26
  • Вариант 4
  • Вариант 4. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 5
  • Вариант 5. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 6
  • Вариант 6. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 7
  • Вариант 7. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 8
  • Вариант 8. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 9
  • Вариант 9. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 10
  • Вариант 10. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 11
  • Вариант 11. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 12
  • Вариант 12. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 26
  • Вариант 13
  • Вариант 13. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 14
  • Вариант 14. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 15
  • Вариант 15. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 16
  • Вариант 16. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 17
  • Вариант 17. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 18
  • Вариант 18. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 19
  • Вариант 19. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 20
  • Вариант 20. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 21
  • Вариант 21. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 22
  • Вариант 22. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 23
  • Вариант 23. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 24
  • Вариант 24. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 25
  • Вариант 25. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 26
  • Вариант 26. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
  • Вариант 27
  • Вариант 27. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 28
  • Вариант 28. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 26
  • Вариант 29
  • Вариант 29. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 30
  • Вариант 30. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 31
  • Вариант 31. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 32
  • Вариант 32. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 33
  • Вариант 33. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 34
  • Вариант 34. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 35
  • Вариант 35. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
  • Вариант 36
  • Вариант 36. Задания по ОГЭ 2020. Математика. И.В. Ященко. 36 вариантов
  • Решения заданий по номерам
    • 1-5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26

Для наших пользователей доступны следующие материалы:

  • Инструменты ЕГЭиста
  • Наш канал

Источник

4 класс. Моро. Учебник №2. Ответы к стр. 10

Янв 19

4 класс. Моро. Учебник №2. Ответы к стр. 10

Числа от 1 до 1000
Странички для любознательных
Ответы к стр. 10

Рисунок к заданию 1 стр. 10 учебник часть 2 по математике 4 класс Моро

1. Используя данные о скоростях движения пешеходов, машин, самолетов и др., составляй и решай задачи, в которых нужно сравнить скорости, найти скорость, узнать пройденное за несколько часов расстояние и т.д.

Мама с дочкой пошли на дачу пешком со скоростью 40 м/мин и шли до дачи 1 ч. А папа поехал к ним с работы на велосипеде со скоростью 200 м/мин. Сколько времени добирался до дачи папа, если он преодолел такое же расстояние, что и мама с дочкой?
1 ч = 60 мин
1) 40 • 60 = 2400 (м) − расстояние до дачи
2 ) 2400 : 200 = 12 (мин)
О т в е т: папа ехал 12 минут.

Из деревни в посёлок вышел турист со скоростью 5 км/ч и пошёл напрямую через поле. Сразу за ним на лошади со скоростью 15 км/ч по грунтовой дороге поскакал в посёлок лесничий и на мотоцикле со скоростью 70 км/ч поехал по шоссе до посёлка почтальон. Кто из них быстрее окажется в посёлке, если по прямой расстояние до посёлка 15 км, по грунтовой дороге — 30 км, а по шоссе — 70 км?
1) 15 : 5 = 3 (ч) — шёл турист
2) 30 : 15 = 2 (ч) — скакал лесничий
3) 70 : 70 = 1 (ч) — ехал почтальон
1

На соревнованиях лыжник шёл от старта до стрельбища со скоростью 3 м/с, а от стрельбища до финиша со скоростью 5 м/с. Какой путь прошёл лыжник, если до стрельбища он шёл 15 мин, а от стрельбища до финиша — 11 мин?
15 мин = 900 с, 11 мин = 660 с
1) 3 • 900 = 2700 (м) — до стрельбища
2) 5 • 660 = 3300 (м) — от стрельбища до финиша
3) 2700 + 3300 = 6000 (м) = 6 (км)
О т в е т: лыжник прошёл 6 км.

Из одного города в другой выехал красный автомобиль со скоростью 70 км/ч, а через 1 час после него, по тому же маршруту, выехал синий автомобиль со скоростью 90 км/ч. Определите, смог ли догнать синий автомобиль красный через 3 часа пути?
1) 3 + 1 = 4 (ч) − ехал красный автомобиль
2) 4 • 70 = 280 (км) − проехал красный автомобиль
3) 3 • 90 = 270 (км) − проехал синий автомобиль
270 через 3 часа пути синий автомобиль не догнал красный .

Из города в деревню выехал пассажирский поезд со скоростью 100 км/ч, а ему навстречу из деревни в то же время выехал товарный поезд со скоростью 70 км/ч. Какое расстояние между городом и деревней, если поеда встретились через 2 ч?
1) 100 • 2 = 200 (км) − прошёл пассажирский поезд
2) 70 • 2 = 140 (км) − прошёл товарный поезд
3) 200 + 140 = 340 (км)
О т в е т: расстояние между городом и деревней 340 км.

При тушении лесного пожара вертолёт вылетел от озера с водой до места возгорания со скоростью 200 км/ч. Пожар был потушен за 1 ч. Сколько раз вылили воду с пожарного вертолета, если расстояние от места пожара до озера 20 км?
1) 20 • 2 = 40 (км) − путь до пожара и обратно до озера
2) 200 • 1 = 200 (км) − пролетел вертолет за 1 часа
3) 200 : 40 = 5 (р.)
О т в е т: вертолёт вылил воду 5 раз.

Самолёт вылетел из одного города в другой со скоростью 15 км/мин и пролетел расстояние 1800 км. Какое расстояние за это же время пролетит спутник, скорость которого 28000 км/ч?
1) 1800 : 15 = 120 (мин) = 2 (ч) — летел самолёт
2) 28000 • 2 = 56000 (км)
О т в е т: спутник пролетит 56000 км.

Чтобы добраться от одного острова до другого туристу нужно было плыть 2 ч на лодке, 1 ч на катере и 3 ч на теплоходе. Найдите расстояние между островами, если скорость лодки − 5 км/ч, катера − 70 км/ч, теплохода − 35 км/ч?
1) 5 • 2 = 10 (км) − путь на лодке
2) 70 • 1 = 70 (км) − путь на катере
3) 35 • 3 = 105 (км) − путь на теплоходе
4) 10 + 70 + 105 = 185 (км)
Ответ: расстояние между островами 185 км.

2. 1) Составь задачи, используя данные таблицы, и реши их.

Скорость Время Расстояние
Пловец ? 2 мин 100 м
Бегун 100 м/мин 3 мин ?
Лыжник ? 5 мин 900 м

2 ) По полученным данным построй диаграмму скорости пловца, бегуна и лыжника, обозначая скорость 10 м/мин одной клеткой.

Пловец на соревнованиях проплыл 100 м за 2 минуты. Найдите скорость пловца.
100 : 2 = 50 (м/мин)
Ответ: скорость пловца 50 м/мин.

Бегун пробежал дистанцию за 3 минуты со скоростью 100 м/мин. Найдите длину дистанции.
100 • 3 = 300 (м)
Ответ: длина дистанции 300 метров.

Лыжник проехал 900 м за 5 минут. Найдите скорость лыжника.
900 : 5 = 180 (м/мин)
Ответ: скорость лыжника 180 м/мин.

Источник



От спортивного лагеря до озера туристы шли 3 часа со скоростью 6 км / ч, потом они устроили привал?

Математика | 1 — 4 классы

От спортивного лагеря до озера туристы шли 3 часа со скоростью 6 км / ч, потом они устроили привал.

После привала до горы туристы шли 4 часа со скоростью 5 км / ч.

Чему равно расстояние от лагеря до горы?

1) 6 * 3 = 18 (км) — расстояние от лагеря до озера

2)4 * 5 = 20 (км) — расстояние от озера до горы

3)18 + 20 = 38 (км) — расстояние от лагеря до горы

Туристический лагерь расположен в 15 км от леса выйдя из лагеря туристы подошли к озеру и остановились на привал?

Туристический лагерь расположен в 15 км от леса выйдя из лагеря туристы подошли к озеру и остановились на привал.

После этого они без остоновок дошли до леса сколько километров туристы прошли от озера до леса если это расстояние в 4 раза меньше расстояния от лагеря до озера ?

Туристы шли до привала 4 ч?

Туристы шли до привала 4 ч.

Со скоростью 5 км \ ч.

Отдохнув они шли еще 3 ч.

Какова была их скорость после привала если весь путь равен 32 км \ ч,.

Туристы шли до привала 4 часа со скоростью 5 км / час ?

Туристы шли до привала 4 часа со скоростью 5 км / час .

После привала они шли еще 3 часа .

Какова была их скорость после привала , если весь путь равен 32 км?

Решите задачу?

ТУРИСТЫ ШЛИ ДО ПРИВАЛА 4 часа со скоростью 5км / ч.

ПОСЛЕ ПРИВАЛА ОНИ ШЛИ ЕЩЁ 3 часа.

КАКОВА БЫЛА ИХ СКОРОСТЬ ПОСЛЕ ПРИВАЛА, ЕСЛЕ ПУТЬ РАВЕН 32км?

Ученики вышли в поход в 9?

Ученики вышли в поход в 9.

00. До лагеря им надо было пройти 19 км.

Первые 3 часа они шли со скоростью 4км / ч и сделали привал на один час и 15 мин.

Потом они пошли дальше со скоростью 3, 5 км / ч 1) сколько км ученики прошли за первые 3 часа 2) сколтко км ученикам надо было еще пройти после привала 3) сколько часов ученики шли после привала?

4) в котором часу ученики пришли в лагерь?

Только решение Туристы шли по маршруту 3 часа, после этого сделали привал 40 мин?

Только решение Туристы шли по маршруту 3 часа, после этого сделали привал 40 мин.

И продолжили путешествие.

Всё путешествие заняло 5 ч.

Сколько времени туристы шли после привала?

От лагеря до станции турист ехал на велосипеде по проселочной дороге 3 часа со скоростью 10 километров час обратно до лагеря и то же расстояние шёл пешком со скоростью 5 километров в час ?

От лагеря до станции турист ехал на велосипеде по проселочной дороге 3 часа со скоростью 10 километров час обратно до лагеря и то же расстояние шёл пешком со скоростью 5 километров в час .

За сколько часов турист добрался от станции до лагеря плагины.

Туристы шли по маршруту 3 часа после этого сделали привал на 40 минут и продолжили путешествие ?

Туристы шли по маршруту 3 часа после этого сделали привал на 40 минут и продолжили путешествие .

Все путешествие заняло 5 часов .

Сколько времени туристы шли после привала?

Туристы шли до привала 4 часа со скоростью 5 км?

Туристы шли до привала 4 часа со скоростью 5 км.

Ч . после привала они шли ещё 3 часа .

Какова была их скорость после привала , если весь путь равен 32 км.

Туристы шли до привала 6ч со скоростью 5км / ч?

Туристы шли до привала 6ч со скоростью 5км / ч.

После привала они шли ещё 4ч.

Какова была их скорость после привала если весь путь равен 46км?

Вы зашли на страницу вопроса От спортивного лагеря до озера туристы шли 3 часа со скоростью 6 км / ч, потом они устроили привал?, который относится к категории Математика. По уровню сложности вопрос соответствует учебной программе для учащихся 1 — 4 классов. В этой же категории вы найдете ответ и на другие, похожие вопросы по теме, найти который можно с помощью автоматической системы «умный поиск». Интересную информацию можно найти в комментариях-ответах пользователей, с которыми есть обратная связь для обсуждения темы. Если предложенные варианты ответов не удовлетворяют, создайте свой вариант запроса в верхней строке.

Количество единорогов равно количеству сосисок.

Вторая сторона прямоугольника равна (14 — 2•3) : 2 = 4см.

19, 3 + 2, 4 = 21, 7 (км / ч) скорость по течению 19, 3 — 2, 4 = 16, 9 (км / ч) против Ответ : скорость катера по течению 21, 7 км / ч, а против течения 16, 9 км / ч.

1)19. 3 + 2. 4 = 21. 7 (км / ч) — скорость по течению. 2) 19. 3 — 2. 4 = 16. 9(км / ч) — скорость против течения.

Зачем надо было начертить.

1. ДАНО Y = (2x — 1) * ㏑(2x + 5). Производная. 2. Площадь фигуры. Пределы интегрирования — точки пересечения графиков. Х1 = 0 и х2 = 1. Парабола выше — разность функций ОТВЕТ S = 1 / 6.

9 часов вечера 31 декабря.

1, у = — х + 1 найди в инете.

(x * 6 + 68) : 4 = 38 Домножим обе части уравнения на 4 : x * 6 + 68 = 152 Перенесём свободные члены в правую часть уравнения : x * 6 = 152 — 68 x * 6 = 84 Разделим обе части уравнения не 6 : x = 14 Проверим : (14 * 6 + 68) : 4 = (84 + 68) : 4 = 152 ..

Источник

ЗАДАЧА 21
огэ

Задачи разделены на уровни сложности. Задачи из любого уровня вполне реально встретить на настоящем экзамене ЕГЭ, более сложные встретятся если «не повезло».

Сложность 1 (легкие задачи)

    Мастер выполняет заказ на детали за 4 часа. Ученик мастера выполняет такой же заказ за 5 часов. За сколько часов выполнят девять таких заказов мастер и ученик, работая вместе?

Моторная лодка проплыла против течения реки 20 км. После этого мотор вышел из строя, и лодку отнесло течением реки на место старта. На весь путь туда и обратно лодка затратила 6 часов. Найдите скорость лодки в стоячей воде, если скорость течения реки 5 км/ч. Ответ дайте в км/ч.

В 5% раствор кислоты объемом 6 литров добавили 2 литра воды и 4 литра 9% раствора. Сколько процентов составляет концентрация кислоты в получившемся растворе?

Рубашка после двух подорожаний стала стоить 660 рублей, причем первый раз она подорожала на 10%, а второй раз — на 20%. Сколько стоила рубашка до первого подорожания?

Моторная лодка отчалила от пристани и проплыла против течения реки 40 км. После остановки на 30 минут лодка повернула обратно. В пункт отправления лодка приплыла через шесть с половиной часов после отплытия. Найдите скорость лодки в стоячей воде, если скорость течения реки 5 км/ч. Ответ дайте в км/ч.

Пуля, вылетев из ружья, пролетела 30 метров с постоянной скоростью и попала в мишень. Пробив мишень насквозь, пуля потеряла две трети своей скорости и, пролетев еще 10 метров, врезалась в отбойник. Найти начальную скорость пули в м/с, если время полета пули из ружья до отбойника составило 0,1 с.

Грузовая машина выехала из пункта А и должна доехать до пункта В в назначенное время. Однако ровно на середине пути ей пришлось остановиться на 25 минут из-за поломки. Чтобы прибыть в пункт В в назначенное время, машине пришлось увеличить скорость на 10 км/ч. Найдите скорость машины до поломки, если расстояние между А и В составляет 100 км.

В банке находится 5 литров 20-ти процентного раствора вещества. Сколько литров 50-ти процентного раствора того же вещества надо долить в банку, чтобы получился 44-х процентный раствор?

В начальный момент времени часы со стрелками показывают 8 часов 20 минут. Сколько раз до 12 часов 30 минут этого же дня минутная стрелка поравняется с часовой?

Моторная лодка проплыла по течению реки 10 км. После этого мотор вышел из строя, и лодку несло течением еще 2 километра. На весь путь лодка затратила 1,5 часа. Найдите скорость течения реки, если скорость лодки по течению реки 20 км/ч. Ответ дайте в км/ч.

Два друга Андрей и Сергей отвечают на одинаковые вопросы тестового экзамена. Андрей отвечает на 8 вопросов в час, Сергей на 6 вопросов в час. Экзамен они начали одновременно. Андрей ответил на все вопросы экзамена раньше Сергея на 40 минут. Сколько вопросов было в тестовом экзамене?

Весь путь путешественника разбит на три равных по длине отрезка. Первый отрезок пути путешественник прошел пешком со скоростью 5 км/ч. Второй отрезок пути проехал на лошади со скоростью 10 км/ч. Третий участок пути путешественник должен проплыть на плоту по реке. Какова скорость плота, если средняя скорость путешественника на всем пути оказалась равной 3,75 км/ч.

Пуля после попадания в мишень теряет две трети своей скорости и пролетев некоторое расстояние врезается в отбойник. В начальный момент выстрела расстояние от пули до отбойника составляет 200 метров, от мишени до отбойника – 50 метров. Какой должна быть начальная скорость пули в м/с, если средняя скорость пули на всем пути до отбойника оказалась равной 300 м/с.

При сушке абрикосов на солнце 85% первоначального веса испаряется и получается курага. Сколько килограммов абрикосов надо взять для получения 9 килограммов кураги?

Семь чисел образуют арифметическую прогрессию. Сумма первого и последнего равна 6, а сумма второго и третьего равна 0. Найдите пятое число.

Маша путь от своего дома до дома Мишки прошла со скоростью 100 метров/минуту, а обратно она ехала на велосипеде со скоростью 150 метров/минуту. Найдите среднюю скорость Маши на всем пути. Ответ дайте в метрах в минуту.

Пуля после попадания в мишень теряет две трети своей скорости и пролетев некоторое расстояние врезается в отбойник. В начальный момент выстрела расстояние от пули до отбойника составляет 100 метров. Начальная скорость пули – 800 м/с. На каком расстоянии (в метрах) от отбойника была установлена мишень, если средняя скорость пули на всем пути до отбойника оказалась равной 500 м/с.

Турист прошел четверть пути со скоростью 5 км/ч, потом по холмам он прошел еще четверть путь со скоростью 4 км/ч, затем еще четверть пути проехал на велосипеде со скоростью 20 км/ч и последнюю четверть пути проехал на попутном автобусе со скоростью 30 км/ч. Найдите среднюю скорость туриста на всем пути. Ответ дайте в км/ч.

Сложность 2 (средние по сложности задачи)

    Винни-Пух съедает банку меда за 4 часа. Его друг Пятачок съедает половину такой же банки меда за 8 часов. За сколько минут они съедят банку меда вместе?

Винни-Пух съел половину горшочка меда за 40 минут, после чего к нему зашел его друг Пятачок и оставшиеся полгоршочка они доели за 30 минут вместе. Винни-Пух подарил Пятачку на день рождение такой же горшочек меда. За сколько часов может съесть один Пятачок этот горшочек?

Прямолинейный путь букашки разбит на пять равных по длине частей. Скорость букашки на первом участке равна 0,25 м/с. Скорость на втором участке в два раза больше. Скорость букашки на каждом следующем участке в два раза больше чем на предыдущем. Найдите среднюю скорость букашки на всем пути. Ответ дайте в м/с и округлите до десятых.

Цена брюк на 20% больше цены джинсовой рубашки. Джинсовая рубашка стоит 750 рублей. Определите, на сколько процентов трое брюк дешевле четырех рубашек.

Первая труба наполняла бассейн в одиночку два часа. Затем включилась вторая и, проработав вместе еще 4 часа, они наполнили бассейн. Первая труба в одиночку наполняет бассейн в полтора раза быстрее чем вторая, также работающая одна. За сколько часов две трубы вместе наполнят бассейн?

Два велосипедиста одновременно стартуют из диаметрально противоположных точек круговой трассы и двигаются в одном направлении. Скорость первого в полтора раза больше скорости второго. Через сколько минут первый велосипедист догонит второго, если длина трассы 10 километров, а скорость второго велосипедиста равна 20 км/ч?

Первую половину пути катер прошел по течению узкой части реки с большой скоростью течения. После излучины русло реки расширилось, и течение стало в два раза медленнее. Найдите скорость течения в начале пути, если на первую половину потребовалось в 1,2 раза меньше времени. Скорость катера в стоячей воде 20 км/ч. Ответ дайте в км/ч.

Винни-Пух и Кролик должны съесть на время одинаковое количество горшочков с медом. Винни-Пух съедает 4 горшочка за 45 минут. Кролик съедает 6 горшочков за полтора часа. Винни-Пух съел все свои горшочки раньше Кролика на 1 час 15 минут. Сколько горшочков было у каждого?

Пароход длиной 100 метров и баржа длиной 200 метров двигаются по озеру параллельными курсами и в одном направлении. В начальный момент пароход находится позади баржи и расстояние от его носовой части до кормы баржи составляет 5 км. Корма парохода поравняется с носом баржи через 30 минут. Найти скорость баржи, если скорость парохода 25 км/ч. Ответ дайте в км/ч.

В емкости находится 5 литров 20% раствора соли. Какой объем сухой соли (в литрах) необходимо засыпать в емкость, чтобы концентрация соли в емкости стала 84%? Дайте ответ с учетом того, что при засыпании сухой соли в емкость 20% соли просыпается мимо.

В некотором магазине рубашка дорожала дважды, первый раз на 12%, а второй раз — на 20%. Сколько рублей стоила рубашка до первого подорожания, если в общей сложности она подорожала на 86 рублей?

Из пунктов A и B, расстояние между которыми 87,5 км, одновременно навстречу друг другу выехали два автомобиля. Первый ехал со скоростью 50 км/ч. Каждый из автомобилей, повстречав друг друга первый раз, не останавливаясь, поехал дальше. Первый автомобиль, доехав до пункта В, развернулся и поехал обратно. Второй автомобиль, доехав до пункта А, остановился на полчаса и также поехал обратно. Второй раз автомобили повстречались через 3 часа после отправления из начальных пунктов. Найдите скорость (в км/ч) второго автомобиля.

Машина с почтой выехала из пункта А и должна доехать до пункта В в назначенное время. Однако, проехав 5,5 километров, машина была вынуждена вернуться обратно, чтобы взять позабытую посылку. Чтобы прибыть в пункт В в назначенное время, машине пришлось увеличить скорость на 5 км/ч. Найдите запланированную скорость машины, если расстояние между А и В составляет 132 км.

В первой банке объемом 5 литров находится раствор некторого вещества. Во второй банке объемом 8 литров находится другой раствор того же вещества. Если слить вместе обе банки, то в получившимся растворе концентрация вещества будет 12%. Если бы в первой банке было 10 литров такого же раствора что был в ней изначально, а во второй банке ничего не изменилось, то в результате получился бы раствор с концентрацией 10%. Найдите концентрацию вещества во второй банке. Ответ дайте в процентах.

В первом и во втором баках одинакового объема находится 15% растворы некоторого вещества. В третьем баке находится 30% раствор этого же вещества. Если слить вместе все три бака, то концентрация вещества будет 25%. Во сколько раз объем первого бака меньше объема третьего?

Сухогруз с собственной скоростью 15 км/ч отплыл от причала А и плыл по течению реки два часа, после чего сообщил о поломке двигателя. От причала А сразу отплыл буксир длиной 100 метров и с собственной скоростью 20 км/ч. Через час после отплытия буксир еще не догнал сухогруз, и расстояние между его носом и кормой сухогруза составляло 16 км. Найдите скорость течения реки, если сухогруз после поломки дрейфовал со скоростью течения. Ответ выразите в км/ч. (В момент отплытия обоих судов у причала находится корма (задняя часть судна).

Пешеход прошел четверть пути со скоростью 6 км/ч, потом по неровной дороге он прошел еще четверть путь со скоростью 4 км/ч, затем еще четверть пути проехал на велосипеде со скоростью 15 км/ч и последнюю четверть пути проехал на маршрутке со скоростью 60 км/ч. Найдите, на сколько км/ч средняя скорость на первом и втором участках (рассматриваются как один путь) меньше средней скорости на всем пути.

Два пешехода вышли навстречу друг другу из пунктов А и В, расстояние между которыми 10 км. Через два часа они встретились, потратили на разговор 15 минут и пошли дальше каждый в своем старом направлении. Найдите скорость второго пешехода, если первый прибыл в пункт В через 2 часа 55 минут после выхода из А. Ответ дайте в в км/ч.

В первом сосуде находится 25% раствор спирта. Во втором сосуде находится 20% раствор спирта. Если слить вместе эти два раствора и добавить 2 литра чистого спирта, то полученная концентрация будет 26%. Если же слить вместе в два раза больший объем 25% раствора тот же объем 20% и добавить 2 литра чистой волы, то концентрация спирта будет такой же, как во втором сосуде. Найдите объем меньшего сосуда. Ответ дайте в литрах.

Моторная лодка отчалила от пристани и проплыла по течению реки 61,5 км. После остановки на 30 минут лодка повернула обратно. Через 5,5 часов после начала движения от пристани лодке оставалось плыть до нее 30,5 километров. Скорость лодки в стоячей воде 18 км/ч. Найти скорость течения реки, если известно, что она менее 3 км/ч. Ответ дайте в км/ч.

В первом баке находится 10% раствор некоторого вещества. Во втором баке находится 30% раствор этого же вещества. Если слить вместе два бака 10% раствора, один бак 30% раствора и добавить еще два литра воды, то концентрация вещества будет 20%. На сколько литров объем первого бака меньше объема второго?

Если моторная лодка движется против течения реки от пристани А до пристани В, то она преодолевает этот путь за 8 часов. Отплыв от пристани А к пристани В, лодка не доплыла до В 20 км и повернула обратно, и через 11 часов 5 минут вернулась в пункт А. Найти скорость лодки в стоячей воде, если скорость течения реки 2 км/ч.

Один мальчик красит картинку за 4 мин, а второй мальчик – за 6 мин. Они решили вместе покрасить картинку. Есть два способа покрасить картинку вдвоем: первый способ – каждый красит ровно половину картинки (и закончивший красить свою половину просто ждет другого), второй способ – красить всю картинку вместе от начала до конца. Насколько больше минут потребуется для покраски картинки первым способом?

Два соседних эскалатора одинаковой длины движутся один вверх, другой вниз с одинаковыми скоростями. Человек, стоя неподвижно, поднимается вверх по одному эскалатору за 12 секунд. Если человек идет вниз по второму (который двигается вниз) эскалатору, то это занимает 8 секунд. Сколько секунд потратил бы этот же человек, если бы поднимался вверх по неподвижному эскалатору? Скорость человека считается постоянной.

Четыре числа образуют возрастающую геометрическую прогрессию. Сумма первого и четвертого равна 56. Сумма второго и третьего равна 24. Найдите сумму первых двух.

Несколько чисел образуют арифметическую прогрессию. Разность прогрессии равна 2, а сумма всех членов прогрессии равна 108. Сколько членов в этой прогрессии, если сумма первого и пятого равна 16?

Первый конвейер выпускает в полтора раза больше упаковок орехов в час, чем второй. Работая вместе, эти два конвейера выполнили половину некоторого заказа, затем первый аппарат сломался и работу над заказом продолжил один второй. Из скольких упаковок орехов состоял весь заказ, если известно, что второй аппарат в итоге изготовил на 840 упаковок больше первого?

Две команды велосипедистов, состоящие каждая из двух человек, стартуют одновременно и в одном направлении из одной точки круговой трассы. Скорость первого номера первой команды больше скорости первого номера второй команды на 2 км/ч. Проехав по 45 минут каждый, первые номера каждой команды сменились вторыми. Найдите на сколько км/ч скорость второго номера второй команды больше скорости второго номера первой команды, если до финиша оба вторых номера доехали одновременно и ехали 30 минут.

Цена трех кепок меньше цены двух футболок на 45%. Разница в стоимости между тремя футболками и двумя кепками составляет 1020 рублей. Найдите на сколько рублей футболка дороже кепки.

Сложность 3 (более сложные задачи)

    Из пунктов A и B, расстояние между которыми 140 километров, одновременно навстречу друг другу выехали два автомобиля. Первый ехал со скоростью 30 км/ч, второй — со скоростью 40 км/ч. Каждый из автомобилей, повстречав друг друга первый раз, не останавливаясь, поехал дальше. Доехав до пунктов В и А соответственно, они развернулись и поехали обратно. На каком расстоянии от пункта В они встретятся второй раз?

Человек поднимается по стоящему эскалатору за 12 секунд. Если человек стоит на поднимающемся вверх эскалаторе, то он поднимется за 8 секунд. За сколько секунд этот же человек поднимется, если будет идти по движущемуся вверх эскалатору?

Два велосипедиста стартуют одновременно и в одном направлении из одной точки круговой трассы длины 10 км. Скорость первого из них на 3 км/ч больше скорости второго. Через какое время первый велосипедист обгонит второго на полтора круга? Ответ дайте в минутах.

Два велосипедиста стартуют одновременно и в одном направлении из одной точки круговой трассы длины 10 км. Первый велосипедист проезжает круг на 6 минут быстрее второго. Найдите скорость первого велосипедиста в км/ч, если он обгоняет второго на круг за 2 часа.

В гости к Кролику пришли Пятачок и Винни-Пух. Кролик планирует угощать гостей медом. Винни за минуту съедает 0,2 горшочка с медом, Кролик – 1/8 горшочка, а Пятачок – всего 1/40. Кролик уже знает, что если Винни-Пух съест хоть немного больше 4-х горшочков меда, то застрянет. Какое максимальное количество горшочков может поставить на стол Кролик, если он не хочет, чтобы Винни-Пух застрял? В задаче предполагается, что все трое начинают есть одновременно. Каждый берет себе по горшочку и ест только из него, а как только горшочек у кого-то заканчивается, тот берет себе следующий при его наличии.

Четыре мастера выкладывают стену за 4 часа. Если работают первый, второй и третий мастера, то они сделают эту работу за 6 часов, а второй, третий и четвертый мастера выполнят тот же объем работы за 5 часов. За сколько часов справятся с работой первый и четвертый мастера?

При старте из одной точки и в одном направлении по круговой трассе первый велосипедист обгоняет второго каждые два часа. Через сколько минут первый велосипедист второй раз обгонит второго, если они стартовали из диаметрально противоположных точек в одном направлении?

Пароход длиной 80 метров и баржа длиной 120 метров двигаются по озеру параллельными курсами и в одном направлении. В начальный момент пароход находится позади баржи и расстояние от его носовой части до кормы баржи составляет 9 километров 800 метров. Если пароход будет двигаться с той же скоростью, то его корма поравняется с носом баржи через 2 часа. Если же пароход увеличит скорость в полтора раза, то его нос поправляется с кормой сухогруза через 39,2 минуты. Найдите скорость баржи. Ответ дайте в км/ч.

Два пешехода вышли навстречу друг другу из пунктов А и В, расстояние между которыми 10 км. Через два часа они встретились, второй сразу пошел дальше, а первый потратил 10 минут на разговор по телефону и также отправился в своем старом направлении. Найдите скорость второго пешехода, если он прибыл в пункт А на 1 час 30 минут позже, чем первый прибыл в В. Ответ дайте в в км/ч.

Первый и второй велосипедисты выехали навстречу друг другу из различных пунктов А и В соответственно. Они встретились на расстоянии 18 км от В и, не останавливаясь, поехали дальше. Доехав до пунктов В и А соответственно, они развернулись и поехали обратно. Второй раз они встретились на расстоянии 24 км от А. Найти расстояние между пунктами А и В.

Пуля, вылетев из ружья, пролетела 28 метров с постоянной скоростью и попала в мишень. Пробив мишень насквозь, пуля потеряла часть своей скорости и, пролетев еще 15 метров, врезалась в отбойник. Время полета пули из ружья до отбойника составило 0,08 секунды. Если бы от мишени до отбойника было бы не 15, а 6 метров, то общее время полета пули составило 0,06 секунды. Найти отношение скорости пули после мишени к ее скорости до мишени (считается, что эта величина постоянна).

В гости к Кролику пришли Пятачок и Винни-Пух. Винни за минуту съедает 0,2 горшочка с медом, Пятачок – 1/9 горшочка, а Кролик – всего 1/45. Кролик уже знает, что если Винни-Пух съест больше 4-х горшочков меда, то застрянет. Какое максимальное количество горшочков может поставить на стол Кролик, если он не хочет, чтобы Винни-Пух застрял? В задаче предполагается, что все трое начинают есть одновременно и едет все вместе из одного горшочка, а как только он заканчивается – берут следующий.

Доход некоторой семьи складывается из зарплаты мужа, жены и сына-студента. Если зарплату мужа увеличить на 50%, то общий доход семьи увеличится на 32%. Если же зарплату жены уменьшить вдвое, а зарплату мужа уменьшить на 25%, то доход семьи уменьшится на 32%. Во сколько раз зарплата мужа больше зарплаты жены.

Доход некоторой семьи складывается из зарплаты мужа, жены и дочери-студентки. Если зарплату мужа увеличить в полтора раза, а стипендию дочери увеличить в 6 раз, то общий доход семьи увеличится на 52%. Если же зарплату жены уменьшить вдвое, а зарплату мужа уменьшить на 50%, то доход семьи уменьшится на 48%. Какой процент в общем доходе семьи составляет зарплата жены.

Первая бригада рабочих прокладывает дорогу за 3 часа. Если к этой бригаде присоединить вторую бригаду, то вместе они прокладывают дорогу в полтора раза длиннее за 2 часа. Теперь эти бригады с разных сторон начинают строить дорогу длиной 225 км. Сколько километров дороги придется построить второй бригаде?

В одной емкости находится 90 мл кофе, в другой емкости 80 мл молока. Из второй емкости 60 мл молока перелили в первую. Затем из первой емкости 80 мл смеси молока и кофе перелили во вторую. Что больше: концентрация молока в первой емкости или кофе во второй емкости? В ответе запишите большую концентрацию, выраженную в процентах.

Для изготовления изюма взяли некоторое количество винограда и высушили на солнце. Известно, что при сушке на солнце виноград теряет 80% первоначального веса. Половину полученной партии изюма поместили в герметичную упаковку и подготовили к транспортировке. Во время транспортировки упаковка была повреждена, и изюм вобрал в себя влагу из воздуха. В результате его масса увеличилась на 10%. После транспортировки изюм взвесили и получили 8,8 кг. Сколько килограмм винограда изначально высушили на солнце?

Два соседних эскалатора одинаковой длины движутся один вверх, другой вниз с одинаковыми скоростями. Человек, стоя неподвижно, поднимается вверх по одному эскалатору за 12 секунд. Если человек идет вниз по второму (который двигается также вниз) эскалатору, то это занимает 8 секунд. В некоторый день скорость эскалатора уменьшили в два раза; сколько секунд потратит человек в этот день при подъеме вверх по движущемуся вверх эскалатору? Скорость человека считается постоянной.

Несколько чисел образуют арифметическую прогрессию. Сумма первого и пятого членов прогрессии равна 18, а сумма второго и восьмого 46. Сколько членов в этой прогрессии, если сумма всех членов прогрессии равна 265?

Баржа длиной 80 метров и пароход идут параллельными курсами в одном направлении. Капитан парохода издал три гудка с интервалом в 5 минут между каждым гудком. Известно, что в момент первого гудка пароход отстает от баржи и расстояние между его носом и кормой баржи равно 120 метров. В момент второго гудка нос парохода поравнялся с носом баржи. А в момент третьего гудка расстояние между носом баржи и кормой парохода равно 150 метров. Найдите длину парохода. Ответ укажите в метрах.

Первый аппарат изготавливает в час в два раза больше кексов, чем второй. Работая вместе, эти два аппарата выполнили половину заказа, а затем первый аппарат сломался, и работу над заказом продолжил только второй. Известно, что второй аппарат в итоге изготовил на 700 кексов больше первого. Общее время выполнения заказа составило 20 часов. На сколько кексов больше в час изготавливал первый аппарат по сравнению со вторым?

Скорость парохода (длиной 100 метров) больше скорости баржи (длиной 250 метров) на 2,5 км/ч. В начальный момент времени пароход и баржа двигаются параллельными курсами навстречу друг другу, и расстояние между их носовыми частями – 800 метров. Какова скорость баржи, если через полчаса расстояние между их кормовыми частями (крайняя задняя точка) частями составило 18,1 км. Ответ дайте в км/ч.

Две команды велосипедистов, состоящие каждая из двух человек, стартуют одновременно и в одном направлении из одной точки круговой трассы. Скорость первого номера первой команды больше скорости первого номера второй команды на 2 км/ч. Через 90 минут первый номер догнал второго и, проехав еще 15 минут после этого, первые номера каждой команды сменились вторыми. Найдите на сколько км/ч скорость второго номера второй команды больше скорости второго номера первой команды, если до финиша оба вторых номера доехали одновременно и ехали 1,5 часа.

Если два велосипедиста стартуют одновременно и в одном направлении из диаметрально противоположных точек круговой трассы длиной 10 км, то один догоняет другого за 20 минут. Если же они стартуют одновременно и в разных направлениях из диаметрально противоположных точек этой же трассы, то они встречаются пятый раз через 50 минут. Найдите скорости велосипедистов. В ответе укажите большую из них, ответ дайте в км/ч.

Первый велосипедист стартовал из точки А круговой трассы длиной 24 км. Через 10 минут из точки В, диаметрально противоположной точке А, в том же направлении выехал второй велосипедист. Найдите скорость (в км/ч) первого велосипедиста, если известно, что он догнал второго через 15 минут после начала движения второго и прибыл в точку А раньше второго велосипедиста на 30 минут.

Первый велосипедист стартовал из точки А круговой трассы длиной 20 км. Через 5 минут из точки В, диаметрально противоположной точке А, навстречу первому выехал второй велосипедист. Найдите скорость (в км/ч) второго велосипедиста, если известно, что велосипедисты встретились первый через 10 минут после выезда второго, а второй раз – через 39 минут после выезда первого.

Имеется некоторый раствор соли в воде. Вес раствора 5 кг и концентрация соли в нем равна 20%. Сколько килограмм соли необходимо засыпать в емкость, чтобы концентрация соли стала 65%? Дайте ответ с учетом того, что при засыпании соли в емкость 10% соли просыпается мимо, и, кроме этого, засыпаемая соль уже имеет в себе 10% воды.

Обычно Иван Иванович проходит треть своего пути со скоростью 5 км/ч; далее дорога идет в гору, и следующую треть Иван Иванович проходит со
скоростью 3 км/ч. Последнюю треть пути Иван Иванович шел со своей обычной скоростью 6 км/ч, однако на середине этого участка полил дождь и Иван Иванович сел на автобус и за 9 минут доехал до конечной точки маршрута. Найдите среднюю скорость Ивана Ивановича на всем пути, если обычно (с такой же скоростью на каждом участке, но без проезда на автобусе) время в пути составляет 2,1 часа. Ответ укажите в км/ч.

Источник

Читайте также:  Стихи про лесные озера
Adblock
detector