Меню

Что плывет по реке 100

Задачи на движение по реке

Задачи на движение по реке трудны для пятиклассников, а взрослые недоумевают: чего же там трудного? Бревно или плот плывут со скоростью течения реки Vт., которая считается постоянной.

Скорость катера в стоячей воде Vс. называют собственной скоростью катера. Скорость катера по течению реки Vпо теч. больше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Скорость катера против течения реки Vпр теч. меньше собственной скорости катера на скорость течения реки: Vпо теч. = Vс. + Vт.

Эти соотношения полезно проиллюстрировать рисунком.

Скорость катера по течению больше его скорости против течения на две скорости течения.

Задача 1. Скорость катера в стоячей воде равна 15 км/ч, а скорость течения реки — 3 км/ч. Какова скорость катера по течению и против течения реки?

1) 15 + 3 = 18 (км/ч) — скорость катера по течению реки,

2) 15 — 3 = 12 (км/ч) — скорость катера против течения реки.

Ответ. 18 км/ч и 12 км/ч.

Обратим внимание: скорость катера по течению реки — это сумма его собственной скорости и скорости течения реки, а скорость катера против течения реки— это разность его собственной скорости и скорости течения реки, поэтому скорость по течению реки больше скорости против течения на удвоенную скорость течения.

Задача 2. Скорость моторной лодки по течению реки равна 48 км/ч, а против течения — 42 км/ч. Какова скорость течения реки и собственная скорость моторной лодки?

1) 48 — 42 = 6 (км/ч) — удвоенная скорость течения реки,

2) 6: 2 = 3 (км/ч) — скорость течения реки,

3) 48 — 3 = 45 (км/ч) — собственная скорость.

Ответ. 3 км/ч и 45 км/ч.

Задачи для закрепления берём в учебнике «Математика» для 5 класса (Просвещение, С. М. Никольский и др.) или в книге для учителя «Обучение решению текстовых задач в 5-6 классах» (раздел Книги на сайте www.shevkin.ru). Приведём три задачи из учебника.

В качестве примера применения формируемого умения приведём задачу из сборника для подготовки к ГИА-9.

Задача 3. Теплоход проходит по течению реки до пункта назначения 160 км и после стоянки возвращается в пункт отправления. Найдите скорость течения реки, если скорость теплохода в неподвижной воде равна 18 км/ч, стоянка длится 2 часа, а в пункт отправления теплоход возвращается ровно через 20 часов после отплытия из него.

Составлять и решать уравнение с неизвестным в знаменателе научат в 8 классе, если новый стандарт не отменит изучение таких уравнений, а находить скорость теплохода по течению и против течения реки надо научиться в 5 классе.

Источник

Задачи на движение по воде

Разделы: Математика

Данный материал представляет собой систему задач по теме “Движение”.

Цель: помочь учащимся более полно овладеть технологиями решения задач по данной теме.

Задачи на движение по воде.

Очень часто человеку приходится совершать движения по воде: реке, озеру, морю.

Сначала он это делал сам, потом появились плоты, лодки, парусные корабли. С развитием техники пароходы, теплоходы, атомоходы пришли на помощь человеку. И всегда его интересовали длина пути и время, затраченное на его преодоление.

Читайте также:  Реки мазановского района амурской области

Представим себе, что на улице весна. Солнце растопило снег. Появились лужицы и побежали ручьи. Сделаем два бумажных кораблика и пустим один из них в лужу, а второй — в ручей. Что же произойдет с каждым из корабликов?

В луже кораблик будет стоять на месте, а в ручейке — поплывет, так как вода в нем «бежит» к более низкому месту и несет его с собой. То же самое будет происходить с плотом или лодкой.

В озере они будут стоять на месте, а в реке – плыть.

Рассмотрим первый вариант: лужа и озеро. Вода в них не движется и называется стоячей.

Кораблик поплывет по луже только в том случае, если мы его подтолкнем или если подует ветер. А лодка начнет двигаться в озере при помощи весел или если она оснащена мотором, то есть за счет своей скорости. Такое движение называют движением в стоячей воде.

Отличается ли оно от движения по дороге? Ответ: нет. А это значит, что мы с вами знаем как действовать в этом случае.

Задача 1. Скорость катера по озеру равна 16 км/ч.

Какой путь пройдет катер за 3 часа?

Следует запомнить, что скорость катера в стоячей воде называют собственной скоростью.

Задача 2. Моторная лодка за 4 часа проплыла по озеру 60 км.

Найдите собственную скорость моторной лодки.

img1.jpg (7802 bytes)

Задача 3. Сколько времени потребуется лодке, собственная скорость которой

равна 28 км/ч, чтобы проплыть по озеру 84 км?

Итак, чтобы найти длину пройденного пути, необходимо скорость умножить на время.

Чтобы найти скорость, необходимо длину пути разделить на время.

Чтобы найти время, необходимо длину пути разделить на скорость.

Чем же отличается движение по озеру от движения по реке?

Вспомним бумажный кораблик в ручье. Он плыл, потому что вода в нем движется.

Такое движение называют движением по течению. А в обратную сторону – движением против течения.

Итак, вода в реке движется, а значит имеет свою скорость. И называют ее скоростью течения реки. ( Как ее измерить?)

Задача 4. Скорость течения реки равна 2 км/ч. На сколько километров река относит

любой предмет (щепку, плот, лодку) за 1час, за 4 часа?

Ответ: 2 км/ч, 8 км/ч.

Каждый из вас плавал в реке и помнит, что по течению плыть гораздо легче, чем против течения. Почему? Потому, что в одну сторону река «помогает» плыть, а в другую — «мешает».

Те же, кто не умеет плавать, могут представить себе ситуацию, когда дует сильный ветер. Рассмотрим два случая:

1) ветер дует в спину,

2) ветер дует в лицо.

И в том и в другом случае идти сложно. Ветер в спину заставляет бежать, а значит, скорость нашего движения увеличивается. Ветер в лицо сбивает нас, притормаживает. Скорость при этом уменьшается.

Читайте также:  История названия реки самый

Остановимся на движении по течению реки. Мы уже говорили о бумажном кораблике в весеннем ручье. Вода понесет его вместе с собой. И лодка, спущенная на воду, поплывет со скоростью течения. Но если у нее есть собственная скорость, то она поплывет еще быстрее.

Следовательно, чтобы найти скорость движения по течению реки, необходимо сложить собственную скорость лодки и скорость течения.

Задача 5. Собственная скорость катера равна 21 км/ч, а скорость течения реки 4 км/ч. Найдите скорость катера по течению реки.

Теперь представим себе, что лодка должна плыть против течения реки. Без мотора или хотя бы весел, течение отнесет ее в обратную сторону. Но, если придать лодке собственную скорость ( завести мотор или посадить гребца), течение будет продолжать отталкивать ее назад и мешать двигаться вперед со своей скоростью.

Поэтому, чтобы найти скорость лодки против течения, необходимо из собственной скорости вычесть скорость течения.

Задача 6. Скорость течения реки равна 3 км/ч, а собственная скорость катера 17 км/ч.

Найдите скорость катера против течения.

Задача 7. Собственная скорость теплохода равна 47,2 км/ч, а скорость течения реки 4,7 км/ч. Найдите скорость теплохода по течению и против течения.

Ответ: 51,9 км/ч; 42,5 км/ч.

Задача 8. Скорость моторной лодки по течению равна12,4 км/ч. Найдите собственную скорость лодки, если скорость течения реки 2,8 км/ч.

Задача 9. Скорость катера против течения равна 10,6 км/ч. Найдите собственную скорость катера и скорость по течению, если скорость течения реки 2,7 км/ч.

Ответ: 13,3 км/ч; 16 км/ч.

Связь между скоростью по течению и скоростью против течения.

Введем следующие обозначения:

Vс. — собственная скорость,

Vтеч. — скорость течения,

V по теч. — скорость по течению,

V пр.теч. — скорость против течения.

Тогда можно записать следующие формулы:

Попытаемся изобразить это графически:

img2.jpg (10913 bytes)

Вывод: разность скоростей по течению и против течения равна удвоенной скорости течения.

Vno теч — Vnp. теч = 2 Vтеч.

Vтеч = (V по теч — Vnp. теч ): 2

1) Скорость катера против течения равна 23 км/ч, а скорость течения 4 км/ч.

Найдите скорость катера по течению.

2) Скорость моторной лодки по течению реки равна 14 км/ч/ а скорость течения 3 км/ч. Найдите скорость лодки против течения

Задача 10. Определите скорости и заполните таблицу:

Источник



Занимательная головоломка, которую без труда решали советские второклассники. Рискнёте проверить свои силы?

Сегодня Фактрум предлагает вам попробовать свои силы в поисках ответов на шесть вопросов, с которыми советские второклассники справлялись всего за пять минут!

1200

Посмотрите на изображение и попробуйте ответить на следующие вопросы:

  1. Вверх или вниз по течению реки идет пароход?
  2. Какое время года здесь изображено?
  3. Глубока ли река в этом месте?
  4. Далеко ли пристань?
  5. На правом или левом берегу реки она находится?
  6. Какое время дня показал на рисунке художник?

Ответы

arroew

  1. Деревянные треугольники, на которых укреплены бакены, всегда направлены против течения. Пароход плывет вверх по реке.
  2. На рисунке показана стая птиц; они летят в виде угла, одна его сторона короче другой: это журавли. Стайный перелет журавлей бывает весной и осенью. По кронам деревьев на опушке леса можно определить, где юг: они всегда разрастаются гуще на той стороне, которая обращена к югу. Журавли летят в южном направлении. Значит, на рисунке изображена осень.
  3. Река в этом месте мелка: матрос, стоя на носу парохода, шестом измеряет глубину фарватера.
  4. Очевидно, пароход причаливает к пристани: группа пассажиров, взяв вещи, приготовилась сойти с парохода.
  5. Отвечая на 1-й вопрос, мы определили, в какую сторону течет река. Чтобы указать, где правый, а где левый берег реки, надо стать, повернувшись лицом, по течению. Мы знаем, что пароход причаливает к пристани. Видно, что пассажиры приготовились выходить на ту сторону, откуда вы смотрите на рисунок. Значит, ближайшая пристань находится на правом берегу реки.
  6. На бакенах — фонари; ставят их перед вечером и снимают рано утром. Видно, что пастухи гонят стадо в селение. Отсюда приходим к выводу, что на рисунке показан конец дня.
Читайте также:  Режим реки енисей весеннее половодье

Источник

Задача 13: за какое время по реке проплывет плот?

Теплоход плывет по реке из точки А в точку Б в течение 3 часов, а обратно — в течение 5 часов. Собственная скорость теплохода одинакова в обоих случаях. За какое время из точки А в точку Б доплывет плот?

Эта задача была размещена посетителями в разделе Решаем вместе 15 октября 2007 года.

Обозначим скорость теплохода как vт, а скорость реки как vр.

По сути получается, что теплоход без течения преодолеет это расстояние за 4 часа, по течению — за 3 часа и против — за 5 часов.

Скорость теплохода, плывущего против течения относительно берега равна 3-м скоростям течения.

Ответ: плот проплывет данное растояние за 15 часов.

  • задачи с решениями
  • кинематика
  • механика
  • прямолинейное движение
  • равномерное движение
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Комментарии

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Плот плывет по течению реки:

Приравняем пройденные расстояния (1) и (2):

  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии
  • Войдите или зарегистрируйтесь, чтобы отправлять комментарии

Следовательно, разница между 3 и 5 = 2 и есть скорость течения, ну и ответ.

Задача для устного счета 2 класса. Не старше. Из реального учебника. Знаменита она тем, что решение, точнее, ответ порождает юмористические посылы в адрес составителей, ибо:

1) если скорость течения 2, то где теплоход мог плавать 3? Получается, его скорость была отрицательна. ну и:

2) как тогда он плыл против течения?

Немного инфы в тему:

1. Плот имеет массу и потому при сплавке будет плыть с ускорением.

2. Если решается задача по математике и это сопровождается текстами типа «По сути получается, то с решением явная нескладуха».. 😉

Источник

Adblock
detector